Системы управления базами данных – лучшее средство организации
Знание всегда было мощным оружием. Сегодня, когда скорость получения данных постоянно растет, крайне важно научиться правильно их хранить и использовать. Система управления базами данных (СУБД) должна позволять не только организовывать хранение данных и доступ к ним, но и предоставлять возможность анализировать данные и создавать отчеты, которые помогут вам, вашей команде и вашим клиентам легко и быстро принимать обоснованные решения. При наличии широкого выбора программ баз данных, каждая из которых обладает уникальными особенностями, трудно разобраться, что нужно именно вам, чтобы достичь поставленных целей. Поэтому рассмотрим четыре важных функции приложения для базы данных, которые позволят вам наиболее рационально использовать данные, а также оптимизируют и упростят весь процесс управления базой данных:
- Пользовательские приложения и шаблоны приложений. При выборе СУБД, которая может адаптироваться к постоянно меняющимся потребностям организации, разумно выбрать решение, позволяющее создавать пользовательские приложения на базе веб-интерфейса, доступные для всей команды.
- Единый стиль и интерфейс. Если программы базы данных имеют единый стиль и интерфейс, пользователи чувствуют себя более комфортно при работе с приложениями и в меньшей степени рискуют “потеряться среди данных”. Единообразный интерфейс на каждом экране позволяет всегда найти необходимые инструменты.
- Беспрепятственный обмен данными. Необходимо иметь возможность быстро предоставить общий доступ к данным в профессиональном и легком для восприятия формате. Система управления базами данных, обеспечивающая возможность доступа как локально, так и через Интернет, позволит вам предоставлять доступ различным пользователям наиболее подходящим для них (и для вас) способом. Чтобы гарантировать доступ пользователей только к предназначенным для них данным, ищите такую технологию базы данных, которая позволяет предоставлять специальные разрешения отдельным пользователям, чтобы видимость данных всегда оставалась под вашим контролем.
- Совместимость с другими программами. Поскольку данные могут поступать из разных источников, выбранная вами система должна легко интегрировать данные из множества других программ. Объединение собственных данных с данными, созданными в других программах, обмен данными между разными программами, сбор и хранение данных в течение длительного времени с периодическим экспортом данных в другие программы — все это характеризует гибкое решение, которое будет работать так, как вам нужно.
Наряду с пользовательскими приложениями и профессионально разработанными шаблонами приложений, единым оптимизированным интерфейсом, защищенным общим доступом к данным и совместимостью с другими программами, не следует забывать и о внутренней структуре СУБД. В идеале она должна быть надежной, масштабируемой, управляемой в долгосрочной перспективе, а также предоставлять функции безопасности, обеспечивающие гарантированную защиту данных вашей организации как в облаке, так и локально. Если вы учтете все эти факторы, то сможете улучшить управление своей базой данных, получить важные функции и такой уровень безопасности, который обеспечит защиту ваших данных как сейчас, так и в будущем.
<!–
Learn how the new Office enables teams to collaborate better than ever. For more information about moving to the cloud check out our e-book: “Myths About Moving to the Cloud.”
–>
Page not found — Сайт skobelevserg!
- Главная
- Информатика
- Практикумы
- Подготовка к ОГЭ
- Рабочие программы
- Используемая литература
- Об авторах
Unfortunately the page you’re looking doesn’t exist (anymore) or there was an error in the link you followed or typed. This way to the home page.
- Главная
- Информатика
- 5 класс (ФГОС)
- Информация вокруг нас
- Компьютер — универсальная машина для работы с информацией
- Ввод информации в память компьютера
- Управление компьютером
- Хранение информации
- Передача информации
- Кодирование информации
- Текстовая информация
- Представление информации в виде таблиц
- Наглядные формы представления информации
- Обработка информации
- 6 класс (ФГОС)
- Объекты окружающего мира
- Компьютерные объекты
- Отношения объектов и их множеств
- Разновидности объектов и их классификация
- Системы объектов
- Персональный компьютер как система
- Как мы познаем окружающий мир
- Понятие как форма мышления
- Информационное моделирование
- Знаковые информационные модели
- Табличные информационные объекты
- Графики и диаграммы
- Схемы
- Что такое алгоритм
- Исполнители вокруг нас
- Формы записи алгоритмов
- Типы алгоритмов
- Управление исполнителем Чертежник
- Компьютерный практикум
- 7 класс (ФГОС)
- Информация и информационные процессы
- Компьютер универсальное устройство для работы с информацией
- Обработка графической информации
- Обработка текстовой информации
- Технология мультимедиа
- 8 класс (ФГОС)
- Математические основы информатики
- Основы алгоритмизации
- Начала программирования
- 9 класс (ФГОС)
- Моделирование и формализация
- Алгоритмизация и программирование
- Обработка числовой информации в электронных таблицах
- Коммуникационные технологии
- 10 класс (ФГОС)
- Информация и информационные процессы
- Компьютер и его программное обеспечение
- Представление информации в компьютере
- Элементы теории множеств и алгебры логики
- Современные технологии создания и обработки информационных объектов
- 11 класс (ФГОС)
- Обработка информации в электронных таблицах
- Алгоритмы и элементы программирования
- Информационное моделирование
- Сетевые информационные технологии
- Основы социальной информатики
Практикумы- Google формы
- Основы работы в Microsoft PowerPoint
- Создание анимации в презентациях
- Основы работы в Microsoft Word
- Основы работы в Microsoft Excel
- Создание простейшей базы данных
- Практикум по MS Excel
- Подготовка к ОГЭ
- Рабочие программы
- Используемая литература
- Об авторах
- Блоги
- Сайты
Что такое БД? Понимание бортовой диагностики
Как бортовая диагностика изменилась за эти годы?
OBD значительно изменился за годы, прошедшие с момента его появления в 1980-х годах. Первоначально система уведомляла пользователя о проблеме с использованием MIL, но не сохраняла никакой информации о характере проблемы. По мере того, как автомобили становились все более совершенными, количество датчиков, установленных в транспортных средствах, увеличивалось, как и объем информации, хранящейся внутри системы.
Эволюцию систем OBD можно разделить на две отдельные фазы в зависимости от типа системы, популярной в то время. Они описаны более подробно ниже:
1. OBD-I
Первые системы OBD были закрытыми по своей природе, поэтому они различались между производителями. До 1990 года коды, системы и информация, собираемая каждой системой OBD, сильно различались от производителя к производителю. Хотя эти системы оказались полезными, они были излишне сложными для техников в работе — техническим специалистам приходилось покупать новый инструмент и кабель для каждой марки автомобиля или вкладывать средства в сканер, который имел набор кабелей-адаптеров для разных марок автомобилей. Из-за проприетарного характера этих систем пользователям часто приходилось обращаться к специалистам дилерских центров для диагностики проблем.
Стремление к стандартизации систем OBD не начиналось до тех пор, пока в 1991 году Калифорнийский совет по воздушным ресурсам не обязал использовать OBD во всех автомобилях. Однако совет не выпускал никаких стандартов для этих OBD, что создавало дополнительные трудности для производителей и пользователей транспортных средств. Когда в ответ на эту потребность в 1994 году был введен стандарт OBD-II, все предыдущие формы OBD были задним числом классифицированы как системы OBD-I.
2. OBD-II
В 1994 году Калифорнийский совет по воздушным ресурсам выпустил OBD-II в качестве набора стандартов для систем OBD для всех транспортных средств, продаваемых в Калифорнии. Этот мандат был официально реализован в 1996 модельного года и с тех пор используется. Общество автомобильных инженеров и Международная организация по стандартизации, известные как SAE и ISO, соответственно, также выпустили стандарты для обмена цифровой информацией между ЭБУ и диагностическим сканером.
Агентство по охране окружающей среды еще больше расширило использование OBD-II после принятия Закона о чистом воздухе — по состоянию на 2001 г. 33 штата и местные территории требуют регулярных проверок транспортных средств, чтобы убедиться, что они соответствуют стандартам выбросов, а системы OBD-II являются ключевой частью эти проверки.Стандарты OBD-II характеризуются несколькими требованиями, включая следующие:
- Разъем OBD-II: Современные системы OBD используют стандартизированные DLC, называемые разъемами типа 2. Это позволяет техническим специалистам использовать тот же кабель, кабель типа 2, для доступа к цифровым сообщениям, хранящимся в системе OBD, через порт. Расположение этого порта не стандартное, но обычно он находится под приборной панелью со стороны водителя автомобиля.
- Мониторинг системы: Агентство по охране окружающей среды требует, чтобы системы OBD контролировали проблемы, влияющие на выбросы транспортных средств.
При наличии этого набора стандартов технические специалисты могут быстро и легко обслуживать самые разные автомобили без использования специальных инструментов производителя.
Что такое OBDII? История бортовой диагностики
Возможно, вы встречали термины «OBD» или «OBDII», когда читали об подключенных транспортных средствах и устройстве Geotab GO. Эти функции являются частью бортовых компьютеров автомобиля и имеют историю, о которой мало кто знает. Прочитайте этот пост для обзора OBDII и графика его развития.
См. также:
История спутников GPS и коммерческого GPS-трекинга
Geotab GO спас мой отпуск на автофургоне
Что такое OBD (бортовая диагностика)?
Бортовая диагностика (OBD) относится к автомобильной электронной системе, которая обеспечивает самодиагностику автомобиля и возможность составления отчетов для специалистов по ремонту. OBD дает техническим специалистам доступ к информации о подсистеме с целью мониторинга производительности и анализа потребностей в ремонте.
OBD — это стандартный протокол, используемый в большинстве легковых автомобилей для получения диагностической информации. Информация генерируется блоками управления двигателем (ECU или модулями управления двигателем) внутри автомобиля. Они подобны мозгу автомобиля или компьютерам.
Почему OBD так важен?
OBD является важной частью телематики и управления автопарком, позволяя измерять и управлять состоянием транспортного средства и вождением.
Благодаря OBD автопарки могут:
- отслеживать тенденции износа и видеть, какие детали автомобиля изнашиваются быстрее, чем другие
- мгновенно диагностировать проблемы автомобиля до их возникновения, поддерживая упреждающее, а не реактивное управление
- измерять поведение вождения , скорость, время простоя и многое другое
Где находится порт OBDII?
В обычном легковом автомобиле порт OBDII находится на нижней стороне приборной панели со стороны водителя. В зависимости от типа автомобиля порт может иметь 16-контактную, 6-контактную или 9-контактную конфигурацию. для установки устройства слежения за автотранспортом Geotab GO .
В чем разница между OBD и OBDII?
OBDII — это, проще говоря, второе поколение OBD или OBD I. Первоначально OBD I был внешне подключен к консоли автомобиля, а теперь OBDII интегрирован в само транспортное средство. Оригинальный OBD использовался до тех пор, пока в начале 1990-х годов не был изобретен OBDII.
Чтобы узнать больше о значении порта OBD, прочитайте этот технический документ: Сохранение конфиденциальности и безопасности в подключенном автомобиле: порт OBD на дороге .
История OBDII
История бортовой диагностики восходит к 1960-м годам. Несколько организаций заложили основу для стандарта, в том числе Калифорнийский совет по воздушным ресурсам (CARB), Общество автомобильных инженеров (SAE), Международная организация по стандартизации (ISO) и Агентство по охране окружающей среды (EPA).
Важно отметить, что до стандартизации производители создавали собственные системы. Инструменты каждого производителя (а иногда и модели одного производителя) имели свой тип разъема, требования к электронному интерфейсу. Они также использовали свои собственные пользовательские коды для сообщения о проблемах.
Основные моменты истории OBD:
1968 — Volkswagen представил первую компьютерную систему OBD с возможностью сканирования.
1978 — компания Datsun представила простую систему OBD с ограниченными нестандартизированными возможностями.
1979 — Общество автомобильных инженеров (SAE) рекомендует стандартный диагностический разъем и набор диагностических тестовых сигналов.
1980 — GM представила собственный интерфейс и протокол, способный обеспечить диагностику двигателя через интерфейс RS-232 или, проще говоря, путем мигания индикатора Check Engine.
1988 — Стандартизация бортовой диагностики началась в конце 1980-х годов после рекомендации SAE 1988 года, которая требовала стандартного разъема и набора диагностических средств.
1991 — В соответствии с требованиями штата Калифорния все автомобили должны иметь базовую бортовую диагностику в той или иной форме. Это называется OBD I.
1994 — Штат Калифорния предписал, чтобы все автомобили, продаваемые в штате, начиная с 1996 года, были оснащены OBD в соответствии с рекомендациями SAE — теперь это называется OBDII. Это связано с желанием провести всесторонние испытания на выбросы. OBDII включает серию стандартных диагностических кодов неисправностей (DTC) .
1996 — OBD-II становится обязательным для всех автомобилей, произведенных в США.
2001 — EOBD (европейская версия OBD) становится обязательной для всех бензиновых автомобилей в Европейском Союзе (ЕС).
2003 — EOBD становится обязательным для всех дизельных автомобилей в ЕС.
2008 — Начиная с 2008 года все автомобили в США должны внедрять OBDII через сеть контроллеров, как указано в стандарте ISO 15765-4.
Какие данные доступны через OBDII?
OBDII обеспечивает доступ к информации о состоянии и диагностическим кодам неисправностей (DTC) для:
- Силовой агрегат (двигатель и трансмиссия)
- Системы контроля выбросов
Кроме того, вы можете получить доступ к следующей информации об автомобиле через OBD II:
- Идентификационный номер автомобиля (VIN)
- Идентификационный номер калибровки 6 In
- 6
- 6
- 6
- Счетчики системы контроля выбросов
Когда автомобиль доставляется в мастерскую для обслуживания, механик может подключиться к порту OBD с помощью сканирующего устройства, считать коды неисправностей и определить проблему. Это означает, что механики могут точно диагностировать неисправности, быстро осматривать автомобиль и устранять любые неисправности до того, как они станут серьезной проблемой.
Examples
Mode 1 (Vehicle Information):
- Pid 12 — Engine RPM
- Pid 13 — Vehicle Speed
Mode 3 (Trouble Codes: P = Powertrain, C = Chassis, B = Кузов, U = Сеть):
- P0201 — Неисправность цепи форсунки — Цилиндр 1
- P0217 — Перегрев двигателя
- P0219 — Перегрев двигателя
- C0128 — Низкий уровень тормозной жидкости в цепи
- C0710 — Неисправность положения рулевого управления
- B1671 — Напряжение модуля аккумуляторной батареи вне допустимого диапазона
- U2021 — Получены неверные данные/данные о неисправности
OBD и телематика
Наличие OBDII позволяет устройствам телематики бесшумно обрабатывать информацию, такую как обороты двигателя, скорость автомобиля, коды неисправностей, расход топлива и многое другое. Затем телематическое устройство может использовать эту информацию для определения начала и окончания поездки, превышения оборотов, превышения скорости, чрезмерного холостого хода, расхода топлива и т. д. Вся эта информация загружается в программный интерфейс и позволяет менеджерам автопарка отслеживать использование и производительность транспортного средства.
Из-за множества протоколов OBD не все телематические решения предназначены для работы со всеми существующими сегодня типами транспортных средств. Телематика Geotab преодолевает эту проблему, переводя диагностические коды автомобилей разных марок и моделей и даже электромобилей .
См. также : Нормализация данных и почему это важно
С портом OBD-II решение для отслеживания автопарка можно быстро и легко подключить к вашему автомобилю. В случае Geotab это может быть настроен менее чем за пять минут .
Если в вашем автомобиле или грузовике нет стандартного порта OBDII, вместо него можно использовать адаптер. В любом случае процесс установки проходит быстро и не требует специальных инструментов или помощи профессионального установщика.
Что такое WWH-OBD?
WWH-OBD расшифровывается как World Wide Harmonized бортовая диагностика. Это международный стандарт, используемый для диагностики транспортных средств, внедренный Организацией Объединенных Наций в рамках мандата Глобальных технических правил (GTR), который включает мониторинг данных транспортного средства, таких как выбросы и коды неисправностей двигателя.
Преимущества WWH-OBD
Рассмотрим преимущества перехода на WWH с более технической точки зрения:
Доступ к большему количеству типов данных
В настоящее время OBDII PID, используемые в режиме 1, имеют длину всего один байт, что доступно только до 255 уникальных типов данных. Расширение PID также может быть применено к другим режимам OBD-II, которые были перенесены в WWH через режимы UDS. Адаптация стандартов WWH позволит получить больше доступных данных и даст возможность расширения в будущем.
Более подробные данные о неисправностях
Еще одним преимуществом WWH является расширение информации, содержащейся в неисправностях. В настоящее время OBDII использует двухбайтовый диагностический код неисправности (DTC), чтобы указать, когда возникла неисправность (например, P0070 указывает, что датчик температуры окружающего воздуха «A» имеет общий электрический сбой).
Унифицированные службы диагностики (UDS) преобразуют 2-байтовый DTC в 3-байтовый DTC, в котором третий байт указывает «режим» отказа. Этот режим отказа аналогичен индикатору режима отказа (FMI), используемому в J19.39 протокол. Например, ранее на OBDII у вас могли быть следующие пять неисправностей:
- P0070 Цепь датчика температуры окружающего воздуха
- P0071 Диапазон/рабочие характеристики датчика температуры окружающего воздуха
- P0072 Низкий входной сигнал цепи датчика температуры окружающего воздуха
- P0073 Температура окружающего воздуха Цепь датчика, высокий уровень входного сигнала
- P0074 Прерывистый сигнал цепи датчика температуры окружающего воздуха
С помощью WWH все они объединены в один код P0070 с 5 различными режимами отказа, указанными в третьем байте кода неисправности. Например, P0071 теперь становится P0070-1C.
WWH также предоставляет дополнительную информацию об ошибке, такую как серьезность/класс и состояние. Серьезность указывает, как скоро вам нужно проверить неисправность, а класс неисправности указывает, к какой группе относится неисправность в соответствии со спецификациями GTR. Кроме того, статус неисправности будет указывать на то, находится ли она на рассмотрении, подтверждена или проверка этой неисправности завершена в текущем ездовом цикле.
Таким образом, WWH-OBD расширяет текущую структуру OBD II, чтобы предоставить пользователю еще больше диагностической информации.
Geotab поддерживает WWH-OBD
Geotab уже внедрил протокол WWH в нашу прошивку. Geotab использует сложную систему обнаружения протокола, в которой мы безопасно проверяем, что доступно на транспортном средстве, чтобы выяснить, доступен ли OBD-II или WWH (в некоторых случаях доступны оба).
В Geotab мы постоянно совершенствуем нашу прошивку, чтобы еще больше повысить качество информации, которую получают наши клиенты. Мы уже начали поддерживать 3-байтовую информацию о кодах неисправности и продолжаем добавлять дополнительную информацию о неисправностях, возникающих в автомобилях. Когда новая информация становится доступной через OBDII или WWH (например, новый PID или данные о неисправности), или если на транспортном средстве реализован новый протокол, Geotab делает приоритетным быстрое и точное добавление ее в прошивку. Затем мы немедленно отправляем новую прошивку на наши устройства через облако, чтобы наши клиенты всегда получали максимальную выгоду от своих устройств.
Выход за пределы OBDII
OBDII содержит 10 стандартных режимов для получения необходимой диагностической информации для норм выбросов. Проблема в том, что этих 10 режимов не хватило.
Различные режимы UDS были разработаны с тех пор, как OBDII был внедрен для обогащения доступных данных. Каждый производитель транспортных средств использует свои собственные PID (идентификаторы параметров) и реализует их через дополнительные режимы UDS. Информация, которая не требовалась через данные OBDII (например, одометр и использование ремня безопасности), вместо этого стала доступна через режимы UDS.
Реальность такова, что UDS содержит более 20 дополнительных режимов к текущим 10 стандартным режимам, доступным через OBDII, а это означает, что UDS имеет больше доступной информации. Но именно здесь на помощь приходит WWH-OBD. Он стремится объединить режимы UDS с OBDII, чтобы обогатить данные, доступные для диагностики, сохраняя при этом стандартизированный процесс.
Заключение
В расширяющемся мире IoT порт OBD по-прежнему остается важным для здоровья, безопасности и экологичности автомобиля. Хотя количество и разнообразие подключенных устройств для транспортных средств увеличивается, не все устройства сообщают и отслеживают одну и ту же информацию. Кроме того, совместимость и безопасность могут различаться в зависимости от устройства.
Из-за множества протоколов OBD не все телематические решения предназначены для работы со всеми существующими сегодня типами транспортных средств.