Сложные математические формулы: Шпаргалка Математические формулы. Шпаргалка для ЕГЭ с математики

Самая красивая теорема математики: тождество Эйлера / Хабр
Посмотрев лекцию профессора Робина Уилсона о тождестве Эйлера, я наконец смог понять, почему тождество Эйлера является самым красивым уравнением. Чтобы поделиться моим восхищением это темой и укрепить собственные знания, я изложу заметки, сделанные во время лекции. А здесь вы можете купить его прекрасную книгу.

Что может быть более загадочным, чем взаимодействие мнимых чисел с вещественными, в результате дающее ничто? Такой вопрос задал читатель журнала Physics World в 2004 году, чтобы подчеркнуть красоту уравнения Эйлера «e в степени i, умноженного на пи равно минус единице».


Рисунок 1.0: тождество Эйлера — e в степени i, умноженного на пи, плюс единица равно нулю.

Ещё раньше, в 1988 году, математик Дэвид Уэллс, писавший статьи для американского математического журнала The Mathematical Intelligencer, составил список из 24 теорем математики и провёл опрос, попросив читателей своей статьи выбрать самую красивую теорему. И после того, как с большим отрывом в нём выиграло уравнение Эйлера, оно получило званием «самого красивого уравнения в математике».



Рисунок 2.0: обложка журнала The Mathematical Intelligencer
Рисунок 3.0: опрос Дэвида Уэллса из журнала

Леонарда Эйлера называют самым продуктивным математиком за всю историю. Других выдающихся математиков вдохновляли его работы. Один из лучших физиков в мире, Ричард Фейнман, в своих знаменитых лекциях по физике назвал уравнение Эйлера «самой примечательной формулой в математике». Ещё один потрясающий математик, Майкл Атья, назвал эту формулу "…математическим аналогом фразы Гамлета — «быть или не быть» — очень короткой, очень сжатой, и в то же время очень глубокой".

Существует множество интересных фактов об уравнении Эйлера. Например, оно встречалось в некоторых эпизодах «Симпсонов».


Рисунок 4.0: в этой сцене уравнение Эйлера можно заметить на второй книге в самой правой стопке.
Рисунок 5.0: в этой сцене уравнение Эйлера написано на футболке второстепенного персонажа.

Также уравнение Эйлера стало ключевым пунктом в уголовном деле. В 2003 году аспирант Калифорнийского технологического института Билли Коттрелл писал краской на чужих спортивных автомобилях уравнение Эйлера. На суде он сказал: "

Я знал теорему Эйлера с пяти лет, и её обязаны знать все".


Рисунок 6.0: марка, выпущенная в 1983 году в Германии в память о двухсотлетии со смерти Эйлера.
Рисунок 7.0: марка, выпущенная Швейцарией в 1957 году в честь 250-й годовщины Эйлера.

Содержание

Почему уравнение Эйлера так важно?

Вы имеете полное право задаться вопросом: почему Билли Коттрелл считал, что об уравнении Эйлера обязаны знать все? И был настолько в этом уверен, что начал писать его на чужих машинах? Ответ прост: Эйлер воспользовался тремя фундаментальными константами математики и применил математические операции умножения и возведения в степень, чтобы записать красивую формулу, дающую в результате ноль или минус один.
  • Константа e связана со степенными функциями.
  • Константа i является не вещественным, а мнимым числом, равным квадратному корню из минус единицы.
  • Знаменитая константа π (пи) связана с окружностями.

Впервые тождество Эйлера появилось в 1748 году в его книге
Introductio in analysin infinitorum
. Позже другие люди увидели, что эта формула связана с тригонометрическими функциями синуса и косинуса, и эта связь удивительна, ведь степенная функция стремится к бесконечности, а тригонометрические функции колеблются в интервале от — 1 до -1.
e в степени i, умноженного на ϕ (фи) = cos ϕ + i * sin ϕ


Рисунок 8.0: экспоненциальная функция y=ex.
Рисунок 8.1: график тождества Эйлера.
Рисунок 8.2: частоты, испускаемые LC-цепью.

Показанные выше уравнения и графы могут показаться абстрактными, но они важны для квантовой физики и вычислений обработки изображений, и при этом зависят от тождества Эйлера.

1: число для счёта


Число 1 (единица) является основой нашей системы исчисления. С неё мы начинаем счёт. Но как мы считаем? Чтобы считать, мы используем цифры 0–9 и систему разрядов, определяющую значение цифры.

Например, число 323 означает 3 сотни, 2 десятка и 3 единицы. Здесь число 3 исполняет две разные роли, которые зависят от его расположения.

323 = (3*100) + (2*10) + (3*1)

Существует и другая система исчисления, называемая двоичной. В этой системе вместо 10 используется основание 2. Она широко применяется в компьютерах и программировании. Например, в двоичной системе:

1001 = (23) + (02) + (01) + (20) = [9 в системе с основанием 10]

Кто создал системы исчисления? Как первые люди считали предметы или животных?

Как возникли наши системы исчисления? Как считали первые цивилизации? Мы точно знаем, что они не пользовались нашей разрядной системой. Например 4000 лет назад древние египтяне использовали систему исчисления с разными символами. Однако они комбинировали символы, создавая новый символ, обозначающий числа.


Рисунок 11: показанные здесь иероглифы образуют число 4622; это одно из чисел, вырезанных на стене в храме в Карнаке (Египет).
Рисунок 12: иероглифы — это изображения, обозначающие слова, а в данном случае — числа.

В то же время, но в другом месте ещё один социум обнаружил способ подсчёта, но в нём тоже использовались символы. Кроме того, основанием их системы исчисления было 60, а не 10. Мы используем их метод счёта для определения времени; поэтому в минуте 60 секунд, а в часе 60 минут.


Рисунок 13: вавилонские числа из шестидесятиричной системы счисления (с основанием 60).

Тысячу лет спустя древние римляне изобрели римские числа. Для обозначения чисел они использовали буквы. Римская нотация не считается разрядной системой, потому что для многих значений нашей системы счисления в ней использовались разные буквы. Именно по этой причине для счёта они использовали абакус.


Рисунок 14: романский абакус в шестнадцатеричной (с основанием 16) системе счисления
Рисунок 15: таблица преобразования из арабских в римские числа

Древние греки тоже не использовали разрядную систему счисления. Греческие математики обозначали числа буквами. У них были специальные буквы для чисел от 100 до 900. Многие люди в то время считали греческие числа запутанными.


Рисунок 15: таблица букв древних греков.

В то же самое время китайские математики начали использовать для расчётов небольшие бамбуковые палочки. Этот китайский способ счёта называют первой десятичной разрядной системой.


Рисунок 16: китайский способ счёта с числами-палочками. Использовался как минимум с 400 года до нашей эры. Квадратная счётная доска использовалась примерно до 1500 года, когда её заменил абакус.

Однако самая уникальная система счёта использовалась индейцами майя. Их система счисления имела основание 20. Для обозначения чисел от 1 до 19 они использовали точки и линии. Чем же отличалась их система счисления? Для каждого числа они использовали изображения голов и отдельный символ нуля 0.


Рисунок 17: Система счисления майя с основанием 20, в которой числа обозначались головами
Рисунок 18: ещё один способ записи чисел майя.

0: число для обозначения ничего


Некоторые цивилизации использовали пробелы, чтобы, например, отличать число 101 от 11. Спустя какое-то время начало появляться особое число — ноль. К примеру, в пещере в индийском городе Гвалиор археологи обнаружили на стене число 270, в котором был ноль. Самое первое зафиксированное использование нуля можно увидеть в Бодлианской библиотеке.
Рисунок 19: вырезанный на стене храма в Гвалиоре круг обозначает ноль. Ему примерно 1500 лет.
Рисунок 20: чёрные точки в манускрипте Бакхшали обозначают нули; это самый старый письменный пример использования числа, ему примерно 1800 лет.

Примерно 1400 лет назад были записаны правила вычислений с нулём. Например, при сложении отрицательного числа и нуля получается то же отрицательное число. Деление на нуль не допускается, потому что если разделить на ноль, то мы получим число, которое может быть равно любому нужному нам числу, что должно быть запрещено.

Вскоре после этого многими людьми были опубликованы книги по арифметике, распространяющие использование индо-арабской записи чисел. Ниже показана эволюция индо-арабских чисел. В большинстве стран используется индо-арабская система чисел, но арабские страны до сих пор пользуются арабскими числами.


Рисунок 21: на этой схеме показана эволюция чисел, происходящих от чисел брахми и заканчивающаяся числами, которыми мы используем и сегодня.
Рисунок 22: классическая гравюра «Арифметика» из Margarita Philosophica Грегора Рейша, на которой изображено соревнование между Боэцием, улыбающимся после открытия индо-арабских чисел и письменных вычислений, и нахмуренным Пифагором, до сих пор пытающимся пользоваться счётной доской.
Пи (π): самое известное иррациональное число

Пи — самое популярное из известных нам иррациональных чисел. Пи можно найти двумя способами: вычислив соотношение длины окружности к её диаметру, или соотношение площади круга к квадрату его радиуса. Евклид доказал, что эти соотношения постоянны для всех окружностей, даже для луны, пенни, шины и т.д.
π = окружность / диаметр ИЛИ π = площадь круга / радиус²


Рисунок 22: анимированная связь между окружностью и диаметром в отношении пи.

Так как иррациональные числа наподобие пи бесконечны и не имеют повторений, мы никогда не закончим записывать пи. Оно продолжается вечно. Есть люди, запомнившие множество десятичных разрядов пи (нынешний рекорд — 70 000 цифр! Источник: «Книга рекордов Гиннесса» ).


Рисунок 23: данные опроса 941 респондентов для определения процента людей, способных запомнить знаки пи после запятой.
Рисунок 24: На стене станции метро Karlsplatz в Вене записаны сотни разрядов пи.

На данный момент компьютеры смогли вычислить всего 2,7 триллиона разрядов пи. Может казаться, что это много, но на самом деле этот путь бесконечен.

Как я сказал выше, число пи нашёл Евклид. Но как поступали люди до Евклида, когда им нужно было найти площадь круга? Историки обнаружили вавилонскую глиняную табличку, в которой было записано отношение периметра шестиугольника к диаметру описанной вокруг него окружности. После вычислений полученное число оказалось равным 3.125. Это очень близко к пи.


Рисунок 24: вавилонская глиняная табличка с отношением периметра шестиугольника к длине описанной окружности.
Рисунок 25: Numberwarrior

Древние египтяне тоже близко подобрались к значению пи. Историки обнаружили документ, показывающий, как древние египтяне нашли число пи. Когда историки перевели документ, то нашли такую задачу:

Например, чтобы найти площадь поля диаметром 9 хета (1 хет = 52,35 метра), нужно выполнить следующее вычисление:

Вычесть 1/9 диаметра, а именно 1. Остаток равен 8. Умножить его на 8, что даёт нам 64. Следовательно, площадь будет равна 64 setjat (единица измерения площади).

Другими словами, диаметр равен 2r, а 1/9 радиуса равно (1/9 • 2r). Тогда если мы вычтем это из исходного диаметра, то получим 2r — (1/9 • 2r) = 8/9(2r). Тогда площадь круга равна 256/81 r². То есть пи равно почти 3,16. Они обнаружили это значение пи примерно 4000 лет назад.




Рисунок 26: математический папирус Ахмеса.

Однако греческие математики нашли для вычисления пи способ получше. Например, Архимед предпочитал работать с периметрами. Он начал рисовать окружности, описывающие многоугольники разного размера. Когда он чертил шестиугольник, то рисовал окружность с диаметром 1. Затем он видел что каждая сторона шестиугольника равна 1/2, а периметр шестиугольника равен 1/2 x 6 = 3. Затем он увеличивал количество сторон многоугольника, пока он не становился похожим на круг. Работая со 96-сторонним многоугольником и применив тот же способ, он получил 2 десятичных разряда пи после запятой: 3 и 10/71 = 3,14084. Спустя много лет китайский математик Лю Ху использовал 3072-сторонний многоугольник и получил число 3,14159 (5 верных десятичных разрядов числа пи после запятой). После этого ещё один китайский математик Цзу Чунчжи провёл ещё более впечатляющую работу. Он работал со 24000-сторонним многоугольником и получил 3,1415926 — семь верных десятичных разрядов пи после запятой.

Спустя тысячу лет немецкий математик Людольф Цейлен работал со 2

62-сторонним многоугольником и получил 35 десятичных разрядов пи. Это число, названное Людольфовым, было высечено на его могильном камне.




В 1706 году англичанин Джон Мэчин, долгое время работавший профессором астрономии, использовал формулу сложения, чтобы доказать, что пи равно
Не беспокоясь о том, как откуда взялась эта формула, Мэчин начал постоянно ею пользоваться, а затем записал показанный ниже ряд. Это был самый большой на то время шаг в количестве разрядов пи.
Рисунок 29: Формула Мэчина для пи

Однако первое упоминание пи появилось в 1706 году. Преподаватель математики Уильям Джонс написал книгу и впервые предложил пи для измерения окружностей. Так пи впервые появилась в книгах!




Рисунок 30: Juliabloggers

В 1873 году Уильям Шэнкс воспользовался формулой Джона Мэчина и получил 707 десятичных разрядов пи. Эти цифры написаны в комнате пи парижского Дворца открытий. Однако позже математики выяснили, что верными являются только 527 разрядов.


Рисунок 31: комната пи

С другой стороны, более интересный способ нахождения пи обнаружил Буффон. Его эксперимент основывался на случайном разбрасывании иголок для оценки пи. Он нарисовал на доске несколько параллельных линий на расстоянии D и взял иголки длиной L. Затем он случайным образом начал бросать иголки на доску и записывал долю иголок, пересекавших линию.


Рисунок 32.0: Science Friday

А после этого другой математик по имени Ладзарини подбросил иголку 3408 раз и получил шесть десятичных разрядов пи с соотношением 355/113. Однако если бы одна иголка не пересекла линию, он получил бы только 2 разряда пи.


Рисунок 32.1: бросание 1000 иголок для оценки приблизительного значения пи
e: история экспоненциального роста

e — это ещё одно знаменитое иррациональное число. Дробная часть e тоже бесконечна, как и у пи. Мы используем число e для вычисления степенного (экспоненциального) роста. Другими словами, мы используем e, когда видим очень быстрый рост или уменьшение.

Один из величайших, а возможно и лучший математик Леонард Эйлер открыл число e в 1736 году и впервые упомянул это особое число в своей книге Mechanica.



Рисунок 33: источник

Чтобы разобраться в экспоненциальном росте, мы можем использовать историю об изобретателе шахмат. Когда он придумал эту игру, то показал её властителю Севера. Царю понравилась игра и он пообещал, что отдаст автору любую награду. Тогда изобретатель попросил нечто очень простое: 20 зерна на первую клетку шахматной доски, 21 зерна на вторую клетку доски, 22 зерна — на третью, и так далее. Каждый раз количество зерна удваивалось. Царь Севера подумал, что просьбу будет выполнить легко, но он ошибался, потому то на последнюю клетку нужно было бы положить 263 зёрен, что равно 9 223 372 036 854 775 808. Это и есть экспоненциальный рост. Он начался с 1, постоянно удваивался, и через 64 шага вырос в огромное число!

Если бы изобретатель шахмат выбрал линейное уравнение, например 2n, то получил бы 2, 4, 6, 8, … 128… Следовательно, в дальней перспективе экспоненциальный рост часто намного превышает полиномиальный.

Кстати, 9 223 372 036 854 775 808–1 — это максимальное значение 64-битного целого числа со знаком.


Рисунок 34: источник: Wikipedia

Число e открыл Эйлер. Однако Якоб Бернулли тоже работал с числом e, когда вычислял сложный процент, чтобы заработать больше денег. Если вложить 100 долларов под 10% дохода, то как будет расти эта сумма? Во-первых, это зависит от того, как часто банк рассчитывает проценты. Например, если он рассчитывает один раз, то мы получим в конце года 110 долларов. Если мы передумаем и будем брать проценты каждые 6 месяцев, то в этом случае мы получим больше 110 долларов. Дело в ттом, что процент, полученный за первые 6 месяцев, тоже получит свой процент. Общая сумма будет равна 110,25 долларов. Можно догадаться, что мы можем получить больше денег, если будем забирать деньги каждый квартал года. А если мы будем делать временной интервал всё короче, то окончательные суммы будут продолжать расти. Такой бесконечный сложный процент сделает нас богатыми! Однако наш общий доход стремится к ограниченному значению, связанному с e.

Бернулли не называл число 2,71828 именем e. Когда Эйлер работал с 2,71828, он возвёл экспоненциальную функцию e в степень x. Свои открытия он изложил в книге The Analysis of Infinite.

В 1798 году Томас Мальтус использовал экспоненциальную функцию в своём эссе, посвящённом пищевому дефициту будущего. Он создал линейный график, показывающий производство пищи и экспоненциальный график, показывающий население мира. Мальтус сделал вывод, что в дальней перспективе экспоненциальный рост победит, и мир ждёт серьёзный дефицит пищи. Это явление назвали «мальтузианской катастрофой». Ньютон тоже использовал эту модель, чтобы показать, как охлаждается чашка чая.


Рисунок 35: закон Ньютона-Рихмана
Рисунок 36: мальтузианская катастрофа

Мнимость числа: i, квадратный корень -1


Долгое время для решения своих задач математикам было достаточно обычных чисел. Однако в какой-то момент для дальнейшего развития им потребовалось открыть нечто новое и загадочное. Например, итальянский математик Кардано пытался разделить число 10 на 2 части, произведение которых было бы равно 40. Чтобы решить эту задачу, он записал уравнение: x (10-x) = 40. Когда он решил это квадратное уравнение, то получил два решения: 5 плюс √-15 и 5 минус √-15, что в то время не имело никакого смысла. Этот результат был бессмысленным, потому что по определению квадратного корня ему нужно было найти число, квадрат которого был бы отрицательным. Однако и положительное, и отрицательное числа в квадрате имеют положительное значение. Как бы то ни было, он нашёл своё уникальное число. Однако первым математиком, назвавшим √-1 (квадратный корень из минус единицы) мнимым числом i, был Эйлер.

Лейбниц дал такой комментарий о мнимом числе √-1:

Комплексные числа — это прекрасное и чудесное убежище божественного духа, почти что амфибия бытия с небытием.

Мы можем складывать, вычитать, умножать и делить мнимые числа. Сложение, вычитание и умножение просты, а деление немного сложнее. Вещественные и мнимые части складываются по отдельности. В случае умножения i2 будет равно -1.

После Эйлера математик Каспар Вессель представил мнимые числа геометрически с создал комплексную плоскость. Сегодня мы представляем каждое комплексное число a + bi как точку с координатами (a,b).



Рисунки 37 и 38: комплексные числа

В викторианскую эпоху многие относились к мнимым числам с подозрением. Однако ирландский математик и астроном Уильям Роуэн Гамильтон покончил с этими сомнениями, определив комплексные числа применительно к кватернионам.

Самое красивое уравнение: тождество Эйлера


Тождество Эйлера связывает экспоненциальную функцию с функциями синуса и косинуса, значения которых колеблются от минус единицы до единицы. Чтобы найти связь с тригонометрическими функциями, мы можем представить их в виде бесконечного ряда, истинного для всех значений

Рисунок 39: открытие тождества Эйлера


Рисунок 40: тождество Эйлера

Эйлер никогда не записывал это тождество в явном виде, и мы не знаем, кто впервые записал его. Тем не менее, мы связываем его с именем Эйлера в знак почтения перед этим великим первопроходцем математики.

Все главные формулы по математике - Математика - Теория, тесты, формулы и задачи

Оглавление:

 

Формулы сокращенного умножения

К оглавлению...

Квадрат суммы:

Формула Квадрат суммы

Квадрат разности:

Формула Квадрат разности

Разность квадратов:

Формула Разность квадратов

Разность кубов:

Формула Разность кубов

Сумма кубов:

Формула Сумма кубов

Куб суммы:

Формула Куб суммы

Куб разности:

Формула Куб разности

Последние две формулы также часто удобно использовать в виде:

Формула Куб суммы

Формула Куб разности

 

Квадратное уравнение и формула разложения квадратного трехчлена на множители

К оглавлению...

Пусть квадратное уравнение имеет вид:

Формула Квадратное уравнение

Тогда дискриминант находят по формуле:

Формула Дискриминант

Если D > 0, то квадратное уравнение имеет два корня, которые находят по формуле:

Формула Корни квадратного уравнения

Если D = 0, то квадратное уравнение имеет один корень (его кратность: 2), который ищется по формуле:

Формула Единственный корень квадратного уравнения

Если D < 0, то квадратное уравнение не имеет корней. В случае когда квадратное уравнение имеет два корня, соответствующий квадратный трехчлен может быть разложен на множители по следующей формуле:

Формула разложения квадратного трехчлена на множители

Если квадратное уравнение имеет один корень, то разложение соответствующего квадратного трехчлена на множители задается следующей формулой:

Формула разложения квадратного трехчлена с единственным корнем на множители

Только в случае если квадратное уравнение имеет два корня (т.е. дискриминант строго больше ноля) выполняется Теорема Виета. Согласно Теореме Виета, сумма корней квадратного уравнения равна:

Формула Сумма корней квадратного уравнения

Произведение корней квадратного уравнения может быть вычислено по формуле:

Формула Произведение корней квадратного уравнения

Парабола

График параболы задается квадратичной функцией:

Формула Квадратичная функция

При этом координаты вершины параболы могут быть вычислены по следующим формулам. Икс вершины:

Формула Икс вершины параболы

Игрек вершины параболы:

Формула Игрек вершины параболы

 

Свойства степеней и корней

К оглавлению...

Основные свойства степеней:

Формула Основные свойства степеней

Формула Основные свойства степеней

Формула Основные свойства степеней

Формула Основные свойства степеней

Формула Основные свойства степеней

Формула Основные свойства степеней

Формула Основные свойства степеней

Последнее свойство выполняется только при n > 0. Ноль можно возводить только в положительную степень.

Формула Свойство отрицательной степени

Основные свойства математических корней:

Формула Основные свойства математических корней

Формула Основные свойства математических корней

Формула Основные свойства математических корней

Формула Основные свойства математических корней

Формула Основные свойства математических корней

Для арифметических корней:

Формула Основные свойства математических корней

Последнее справедливо: если n – нечетное, то для любого a; если же n – четное, то только при a больше либо равном нолю. Для корня нечетной степени выполняется также следующее равенство:

Формула Основные свойства математических корней

Для корня четной степени имеется следующее свойство:

Формула Основные свойства математических корней

 

Формулы с логарифмами

К оглавлению...

Определение логарифма:

Формула Определение логарифма

Определение логарифма можно записать и другим способом:

Формула Определение логарифма

Свойства логарифмов:

Формула Свойства логарифмов

Формула Свойства логарифмов

Формула Свойства логарифмов

Логарифм произведения:

Формула Логарифм произведения

Логарифм дроби:

Формула Логарифм дроби

Вынесение степени за знак логарифма:

Формула Вынесение степени за знак логарифма

Формула Вынесение степени за знак логарифма

Формула Вынесение степени за знак логарифма

Формула Вынесение степени за знак логарифма

Другие полезные свойства логарифмов:

Формула Свойства логарифмов

Формула Свойства логарифмов

 

Арифметическая прогрессия

К оглавлению...

Формулы n-го члена арифметической прогрессии:

Формула n-го члена арифметической прогрессии

Формула n-го члена арифметической прогрессии

Соотношение между тремя соседними членами арифметической прогрессии:

Формула Соотношение между тремя соседними членами арифметической прогрессии

Формула суммы арифметической прогрессии:

Формула суммы арифметической прогрессии

Свойство арифметической прогрессии:

Формула Свойство арифметической прогрессии

 

Геометрическая прогрессия

К оглавлению...

Формулы n-го члена геометрической прогрессии:

Формула n-го члена геометрической прогрессии

Формула n-го члена геометрической прогрессии

Соотношение между тремя соседними членами геометрической прогрессии:

Формула Соотношение между тремя соседними членами геометрической прогрессии

Формула суммы геометрической прогрессии:

Формула суммы геометрической прогрессии

Формула суммы бесконечно убывающей геометрической прогрессии:

Формула суммы бесконечно убывающей геометрической прогрессии

Свойство геометрической прогрессии:

Формула Свойство геометрической прогрессии

 

Тригонометрия

К оглавлению...

Пусть имеется прямоугольный треугольник:

Прямоугольный треугольник

Тогда, определение синуса:

Формула Определение синуса

Определение косинуса:

Формула Определение косинуса

Определение тангенса:

Формула Определение тангенса

Определение котангенса:

Формула Определение котангенса

Основное тригонометрическое тождество:

Формула Основное тригонометрическое тождество

Простейшие следствия из основного тригонометрического тождества:

Формула Простейшие следствия из основного тригонометрического тождества

Формула Простейшие следствия из основного тригонометрического тождества

Формулы двойного угла

Синус двойного угла:

Формула Синус двойного угла

Косинус двойного угла:

Формула Косинус двойного угла

Тангенс двойного угла:

Формула Тангенс двойного угла

Котангенс двойного угла:

Формула Котангенс двойного угла

Тригонометрические формулы сложения

Синус суммы:

Формула Синус суммы

Синус разности:

Формула Синус разности

Косинус суммы:

Формула Косинус суммы

Косинус разности:

Формула Косинус разности

Тангенс суммы:

Формула Тангенс суммы

Тангенс разности:

Формула Тангенс разности

Котангенс суммы:

Формула Котангенс суммы

Котангенс разности:

Формула Котангенс разности

Тригонометрические формулы преобразования суммы в произведение

Сумма синусов:

Формула Сумма синусов

Разность синусов:

Формула Разность синусов

Сумма косинусов:

Формула Сумма косинусов

Разность косинусов:

Формула Разность косинусов

Сумма тангенсов:

Формула Сумма тангенсов

Разность тангенсов:

Формула Разность тангенсов

Сумма котангенсов:

Формула Сумма котангенсов

Разность котангенсов:

Формула Разность котангенсов

Тригонометрические формулы преобразования произведения в сумму

Произведение синусов:

Формула Произведение синусов

Произведение синуса и косинуса:

Формула Произведение синуса и косинуса

Произведение косинусов:

Формула Произведение косинусов

Формулы понижения степени

Формула понижения степени для синуса:

Формула понижения степени для синуса

Формула понижения степени для косинуса:

Формула понижения степени для косинуса

Формула понижения степени для тангенса:

Формула понижения степени для тангенса

Формула понижения степени для котангенса:

Формула понижения степени для котангенса

Формулы половинного угла

Формула половинного угла для тангенса:

Формула половинного угла для тангенса

Формула половинного угла для котангенса:

Формула половинного угла для котангенса

 

Тригонометрические формулы приведения

Формулы приведения задаются в виде таблицы:

Таблица Тригонометрические формулы приведения

 

Тригонометрическая окружность

По тригонометрической окружности легко определять табличные значения тригонометрических функций:

Тригонометрическая окружность

 

Тригонометрические уравнения

К оглавлению...

Формулы решений простейших тригонометрических уравнений. Для синуса существует две равнозначные формы записи решения:

Формула Решение простейшего тригонометрического уравнения для синуса

Формула Решение простейшего тригонометрического уравнения для синуса

Для остальных тригонометрических функций запись однозначна. Для косинуса:

Формула Решение простейшего тригонометрического уравнения для косинуса

Для тангенса:

Формула Решение простейшего тригонометрического уравнения для тангенса

Для котангенса:

Формула Решение простейшего тригонометрического уравнения для котангенса

Решение тригонометрических уравнений в некоторых частных случаях:

Формула Решение тригонометрических уравнений в некоторых частных случаях

Формула Решение тригонометрических уравнений в некоторых частных случаях

Формула Решение тригонометрических уравнений в некоторых частных случаях

Формула Решение тригонометрических уравнений в некоторых частных случаях

Формула Решение тригонометрических уравнений в некоторых частных случаях

Формула Решение тригонометрических уравнений в некоторых частных случаях

Формула Решение тригонометрических уравнений в некоторых частных случаях

Формула Решение тригонометрических уравнений в некоторых частных случаях

 

Геометрия на плоскости (планиметрия)

К оглавлению...

Пусть имеется произвольный треугольник:

Произвольный треугольник

Тогда, сумма углов треугольника:

Формула Сумма углов треугольника

Площадь треугольника через две стороны и угол между ними:

Формула Площадь треугольника через две стороны и угол между ними

Площадь треугольника через сторону и высоту опущенную на неё:

Формула Площадь треугольника через сторону и высоту опущенную на неё

Полупериметр треугольника находится по следующей формуле:

Формула Полупериметр треугольника

Формула Герона для площади треугольника:

Формула Герона для площади треугольника

Площадь треугольника через радиус описанной окружности:

Формула Площадь треугольника через радиус описанной окружности

Формула медианы:

Формула медианы

Свойство биссектрисы:

Формула Свойство биссектрисы

Формулы биссектрисы:

Формула биссектрисы

Формула биссектрисы

Основное свойство высот треугольника:

Формула Основное свойство высот треугольника

Формула высоты:

Формула высоты

Еще одно полезное свойство высот треугольника:

Формула Свойство высот треугольника

Теорема косинусов:

Формула Теорема косинусов

Теорема синусов:

Формула Теорема синусов

Радиус окружности, вписанной в правильный треугольник:

Формула Радиус окружности, вписанной в правильный треугольник

Радиус окружности, описанной около правильного треугольника:

Формула Радиус окружности, описанной около правильного треугольника

Площадь правильного треугольника:

Формула Площадь правильного треугольника

Теорема Пифагора для прямоугольного треугольника (c - гипотенуза, a и b - катеты):

Формула Теорема Пифагора

Радиус окружности, вписанной в прямоугольный треугольник:

Формула Радиус окружности, вписанной в прямоугольный треугольник

Радиус окружности, описанной вокруг прямоугольного треугольника:

Формула Радиус окружности, описанной вокруг прямоугольного треугольника

Площадь прямоугольного треугольника (h - высота опущенная на гипотенузу):

Формула Площадь прямоугольного треугольника

Свойства высоты, опущенной на гипотенузу прямоугольного треугольника:

Формула Свойства высоты, опущенной на гипотенузу прямоугольного треугольника

Формула Свойства высоты, опущенной на гипотенузу прямоугольного треугольника

Формула Свойства высоты, опущенной на гипотенузу прямоугольного треугольника

Длина средней линии трапеции:

Формула Длина средней линии трапеции

Площадь трапеции:

Формула Площадь трапеции

Площадь параллелограмма через сторону и высоту опущенную на неё:

Формула Площадь параллелограмма через сторону и высоту опущенную на неё

Площадь параллелограмма через две стороны и угол между ними:

Формула Площадь параллелограмма через две стороны и угол между ними

Площадь квадрата через длину его стороны:

Формула Площадь квадрата через длину его стороны

Площадь квадрата через длину его диагонали:

Формула Площадь квадрата через длину его диагонали

Площадь ромба (первая формула - через две диагонали, вторая - через длину стороны и угол между сторонами):

Формула Площадь ромба

Площадь прямоугольника через две смежные стороны:

Формула Площадь прямоугольника через две смежные стороны

Площадь произвольного выпуклого четырёхугольника через две диагонали и угол между ними:

Формула Площадь произвольного выпуклого четырёхугольника через две диагонали и угол между ними

Связь площади произвольной фигуры, её полупериметра и радиуса вписанной окружности (очевидно, что формула выполняется только для фигур в которые можно вписать окружность, т.е. в том числе для любых треугольников):

Формула Связь площади произвольной фигуры, её полупериметра и радиуса вписанной окружности

Свойство касательных:

Свойство касательных

Свойство хорды:

Свойство хорды

Теорема о пропорциональных отрезках хорд:

Формула Теорема о пропорциональных отрезках хорд

Теорема о касательной и секущей:

Формула Теорема о касательной и секущей

Теорема о двух секущих:

Формула Теорема о двух секущих

Теорема о центральном и вписанном углах (величина центрального угла в два раза больше величины вписанного угла, если они опираются на общую дугу):

Формула Теорема о центральном и вписанном углах

Свойство вписанных углов (все вписанные углы опирающиеся на общую дугу равны между собой):

Свойство вписанных углов

Свойство центральных углов и хорд:

Формула Свойство центральных углов и хорд

Свойство центральных углов и секущих:

Формула Свойство центральных углов и секущих

Условие, при выполнении которого возможно вписать окружность в четырёхугольник:

Условие, при выполнении которого возможно вписать окружность в четырёхугольник

Условие, при выполнении которого возможно описать окружность вокруг четырёхугольника:

Условие, при выполнении которого возможно описать окружность вокруг четырёхугольника

Сумма углов n-угольника:

Формула Сумма углов n-угольника

Центральный угол правильного n-угольника:

Формула Центральный угол правильного n-угольника

Площадь правильного n-угольника:

Формула Площадь правильного n-угольника

Длина окружности:

Формула Длина окружности

Длина дуги окружности:

Формула Длина дуги окружности

Площадь круга:

Формула Площадь круга

Площадь сектора:

Формула Площадь сектора

Площадь кольца:

Формула Площадь кольца

Площадь кругового сегмента:

Формула Площадь кругового сегмента

 

Геометрия в пространстве (стереометрия)

К оглавлению...

Главная диагональ куба:

Формула Главная диагональ куба

Объем куба:

Формула Объем куба

Объём прямоугольного параллелепипеда:

Формула Объём прямоугольного параллелепипеда

Главная диагональ прямоугольного параллелепипеда (эту формулу также можно назвать: "трёхмерная Теорема Пифагора"):

Формула Трёхмерная Теорема Пифагора

Объём призмы:

Формула Объём призмы

Площадь боковой поверхности прямой призмы (P – периметр основания, l – боковое ребро, в данном случае равное высоте h):

Формула Площадь боковой поверхности прямой призмы

Объём кругового цилиндра:

Формула Объём кругового цилиндра

Площадь боковой поверхности прямого кругового цилиндра:

Формула Площадь боковой поверхности прямого кругового цилиндра

Объём пирамиды:

Формула Объём пирамиды

Площадь боковой поверхности правильной пирамиды (P – периметр основания, l – апофема, т.е. высота боковой грани):

Формула Площадь боковой поверхности правильной пирамиды

Объем кругового конуса:

Формула Объем кругового конуса

Площадь боковой поверхности прямого кругового конуса:

Формула Площадь боковой поверхности прямого кругового конуса

Длина образующей прямого кругового конуса:

Формула Длина образующей прямого кругового конуса

Объём шара:

Формула Объём шара

Площадь поверхности шара (или, другими словами, площадь сферы):

Формула Площадь сферы

 

Координаты

К оглавлению...

Длина отрезка на координатной оси:

Формула Длина отрезка на координатной оси

Длина отрезка на координатной плоскости:

Формула Длина отрезка на координатной плоскости

Длина отрезка в трёхмерной системе координат:

Формула Длина отрезка в трёхмерной системе координат

Координаты середины отрезка (для координатной оси используется только первая формула, для координатной плоскости - первые две формулы, для трехмерной системы координат - все три формулы):

Формула Координаты середины отрезка

 

Таблица умножения

К оглавлению...

Таблица умножения

 

Таблица квадратов двухзначных чисел

К оглавлению...

Таблица квадратов двухзначных чисел

 

Расширенная PDF версия документа "Все главные формулы по школьной математике":

К оглавлению...

ТОП-50 Важнейших формул по математике - Математика - Теория, тесты, формулы и задачи

Знание формул по математике является основой для успешной подготовки и сдачи различных экзаменов, в том числе и ЦТ или ЕГЭ по математике. Формулы по математике, которые надежно хранятся в памяти ученика - это основной инструмент, которым он должен оперировать при решении математических задач. На этой странице сайта представлены 50 важнейших формул по математике.

 

Изучать ТОП-50 Важнейших формул по математике онлайн:

 

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике. На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов, позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

 

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (адрес электронной почты здесь). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

Самые красивые физические и математические формулы.: moris_levran — LiveJournal
Формулы
Математик Анри Пуанкаре в книге «Наука и метод» писал: «Если бы природа не была прекрасна, она не стоила бы того, чтобы ее знать, жизнь не стоила бы того, чтобы ее переживать. Я здесь говорю, конечно, не о той красоте, которая бросается в глаза... Я имею в виду ту более глубокую красоту, которая открывается в гармонии частей, которая постигается только разумом. Это она создает почву, создает каркас для игры видимых красок, ласкающих наши чувства, и без этой поддержки красота мимолетных впечатлений была бы несовершенна как все неотчетливое и преходящее. Напротив красота интеллектуальная дает удовлетворение сама по себе».

П.А.М. Дирак писал: "У теоретической физики есть еще один верный путь развития. Природе присуща та фундаментальная особенность, что самые основные физические законы описываются математической теорией, аппарат которой обладает необыкновенной силой и красотой. Чтобы понять эту теорию, нужно обладать необычайно высокой математической квалификацией. Вы можете спросить: почему природа устроена именно так? На это можно ответить только одно: согласно нашим современным знаниям, природа устроена именно так, а не иначе".

Семь лет назад украинский физик (и художник) Наталия Кондратьева обратилась к ряду ведущих математиков мира с вопросом: «Какие три математические формулы, на ваш взгляд, самые красивые?»
В беседе о красоте математических формул приняли участие сэр Михаэль Атья и Дэвид Элварси из Британии, Яков Синай и Александр Кириллов из США, Фридрих Херцебрух и Юрий Манин из Германии, Давид Рюэль из Франции, Анатолий Вершик и Роберт Минлос из России и другие математики из разных стран. Из украинцев в дискуссии приняли участие академики НАНУ Владимир Королюк и Анатолий Скороход. Часть полученных таким образом материалов и легла в основу изданной Натальей Кондратьевой научной работы «Три самые красивые математические формулы».
— Какую цель вы ставили, обращаясь к математикам с вопросом о красивых формулах?
— Каждое новое столетие приносит обновление научной парадигмы. В самом начале века с ощущением, что мы стоим у порога новой науки, ее новой роли в жизни человеческого общества, я обратилась к математикам с вопросом о красоте идей, стоящих за математическими символами, т.е. о красоте математических формул.
Уже сейчас можно отметить некоторые особенности новой науки. Если в науке ХХ века очень важную роль играла «дружба» математики с физикой, то сейчас математика эффективно сотрудничает с биологией, генетикой, социологией, экономикой… Следовательно, наука будет исследовать соответствия. Математические структуры будут исследовать соответствия между взаимодействиями элементов различных областей и планов. И многое, что раньше мы воспринимали на веру как философские констатации, будет утверждено наукой как конкретное знание.
Этот процесс начался уже в ХХ веке. Так, Колмогоров математически показал, что случайности нет, а есть очень большая сложность. Фрактальная геометрия подтвердила принцип единства в многообразии и т.д.
— Какие же формулы были названы самыми красивыми?
— Сразу скажу, что цели устроить конкурс формулам не было. В своем письме к математикам я писала: «Люди, которые хотят понять, какими законами управляется мир, становятся на путь отыскания гармонии мира. Путь этот уходит в бесконечность (ибо движение вечно), но люди всё равно идут им, т.к. есть особая радость встретить очередную идею или представление. Из ответов на вопрос о красивых формулах, возможно, удастся синтезировать новую грань красоты мира. Кроме того, эта работа может оказаться полезной для будущих ученых как мысль о великой гармонии мира и математики как способе отыскания этой красоты».
Тем не менее среди формул оказались явные фавориты: формула Пифагора и формула Эйлера.
Вслед за ними расположились скорее физические, чем математические формулы, которые в ХХ веке изменили наше преставление о мире, —Максвелла, Шредингера, Эйнштейна.
Также в число самых красивых попали формулы, которые еще находятся на стадии дискуссии, такие, например, как уравнения физического вакуума. Назывались и другие красивые математические формулы.
— Как вы думаете, почему на рубеже второго и третьего тысячелетий формула Пифагора названа одной из самых красивых?
— Во времена Пифагора эта формула воспринималась как выражение принципа космической эволюции: два противоположных начала (два квадрата, соприкасающихся ортогонально) порождают третье, равное их сумме. Можно дать геометрически очень красивые интерпретации.
Возможно, существует какая-то подсознательная, генетическая память о тех временах, когда понятие «математика» означало — «наука», и в синтезе изучались арифметика, живопись, музыка, философия.
Рафаил Хасминский в своем письме написал, что в школе он был поражен красотой формулы Пифагора, что это во многом определило его судьбу как математика.
— А что можно сказать о формуле Эйлера?
— Некоторые математики обращали внимание, что в ней «собрались все», т.е. все самые замечательные математические числа, и единица таит в себе бесконечности! — это имеет глубокий философский смысл.
Недаром эту формулу открыл Эйлер. Великий математик много сделал, чтобы ввести красоту в науку, он даже ввел в математику понятие «градус красоты». Вернее, он ввел это понятие в теорию музыки, которую считал частью математики.
Эйлер полагал, что эстетическое чувство можно развивать и что это чувство необходимо ученому.
Сошлюсь на авторитеты… Гротендик: «Понимание той или иной вещи в математике настолько совершенно, насколько возможно прочувствовать ее красоту».
Пуанкаре: «В математике налицо чувство». Он сравнивал эстетическое чувство в математике с фильтром, который из множества вариантов решения выбирает наиболее гармоничный, который, как правило, и есть верный. Красота и гармония — синонимы, а высшее проявление гармонии есть мировой закон Равновесия. Математика исследует этот закон на разных планах бытия и в разных аспектах. Недаром каждая математическая формула содержит знак равенства.
Думаю, что высшая человеческая гармония есть гармония мысли и чувства. Может быть, поэтому Эйнштейн сказал, что писатель Достоевский дал ему больше, чем математик Гаусс.
Формулу Достоевского «Красота спасет мир» я взяла в качестве эпиграфа к работе о красоте в математике. И он также обсуждался математиками.
— И они согласились с этим утверждением?
— Математики не утверждали и не опровергали этого утверждения. Они его уточнили: «Осознание красоты спасет мир». Здесь сразу вспомнилась работа Юджина Вигнера о роли сознания в квантовых измерениях, написанная им почти пятьдесят лет назад. В этой работе Вигнер показал, что человеческое сознание влияет на окружающую среду, т.е., что мы не только получаем информацию извне, но и посылаем наши мысли и чувства в ответ. Эта работа до сих пор актуальна и имеет как своих сторонников, так и противников. Я очень надеюсь, что в ХХI веке наука докажет: осознание красоты способствует гармонизации нашего мира.

1. Формула Эйлера. Многие видели в этой формуле символ единства всей математики, ибо в ней "-1 представляет арифметику, i - алгебру, π - геометрию и e - анализ".
1
2. Это простое равенство показывает, величина 0,999 (и так до бесконечности) эквивалентна единице. Многие люди не верят, что это может быть правдой, хотя существует несколько доказательств, основанных на теории пределов. Тем не менее, равенство показывает принцип бесконечности.
2
3. Это уравнение было сформулировано Эйнштейном в рамках новаторской общей теории относительности в 1915 году. Правая часть этого уравнения описывает энергию, содержащуюся в нашей Вселенной (в том числе" темную энергию"). Левая сторона описывает геометрию пространства-времени. Равенство отражает тот факт, что в общей теории относительности Эйнштейна, масса и энергия определяют геометрию, и одновременно кривизну, которая является проявлением гравитации. Эйнштейн говорил, что левая часть уравнений тяготения в общей теории относительности, содержащая гравитационное поле, красива и как будто вырезана из мрамора, в то время как правая часть уравнений, описывающая материю, всё ещё уродлива, будто сделана из обыкновенной деревяшки.
3
4. Еще одна доминирующая теория физики — Стандартная модель — описывает электромагнитное, слабое и сильное взаимодействие всех элементарных частиц. Некоторые физики считают, что она отображает все процессы, происходящие во Вселенной, кроме темной материи, темной энергии и не включает в себя гравитацию. В Стандартную модель вписывается и неуловимый до прошлого года бозон Хиггса, хотя не все специалисты уверены в его существовании.
4
5. Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Ее мы помним еще со школы и считаем, что автор теоремы — Пифагор. На самом деле этой формулой пользовались еще в Древнем Египте при строительстве пирамид.
5
6. Теорема Эйлера. Эта теорема заложила фундамент нового раздела математики — топологии. Уравнение устанавливает связь между числом вершин, ребер и граней для многогранников, топологически эквивалентных сфере.
6
7. Специальная теория относительности описывает движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света. Эйнштейн составил формулу, которая описывает, что время и пространство не являются абсолютными понятиями, а скорее являются относительными в зависимости от скорости наблюдателя. Уравнение показывает, как расширяется или замедляется время в зависимости от того, как и куда движется человек.
7
8. Уравнение было получено в 1750-х годах Эйлером и Лагранжем при решении задачи об изохроне. Это проблема определения кривой, по которой тяжелая частица попадает в фиксированную точку за фиксированное время, независимо от начальной точки. В общих словах, если ваша система имеет симметрию, есть соответствующий закон сохранения симметрии.
8
9. Уравнение Каллана — Симанзика. Оно представляет собой дифференциальное уравнение, описывающее эволюцию н-корреляционной функции при изменении масштаба энергий, при которых теория определена и включает в себя бета-функции теории и аномальные размерности. Это уравнение помогло лучше понять квантовую физику.
9
10. Уравнение минимальной поверхности. Это равенство объясняет формирование мыльных пузырей.
10
11. Прямая Эйлера. Теорема Эйлера была доказана в 1765 году. Он обнаружил, что середины сторон треугольника и основания его высот лежат на одной окружности.
11
12. В 1928 году П.А.М. Дирак предложил свой вариант уравнения Шредингера – которое соответствовало теории А. Эйнштейна. Учёный мир был потрясён – Дирак открыл своё уравнение для электрона путём чисто математических манипуляций с высшими математическими объектами, известными как спиноры. И это было сенсацией – до сих пор все великие открытия в физике должны стоять на прочной базе экспериментальных данных. Но Дирак считал, что чистая математика, если она достаточно красива, является надёжным критерием правильности выводов. «Красота уравнений важнее, чем их соответствие экспериментальным данным. … Представляется, что если стремишься получить в уравнениях красоту и обладаешь здоровой интуицией, то ты на верном пути». Именно благодаря его выкладкам был открыт позитрон – антиэлектрон, и предсказал наличие у электрона «спина» - вращения элементарной частицы.
12
13. Дж. Максвелл получил удивительные уравнения, объединившие все явления электричества, магнетизма и оптики. Замечательный немецкий физик, один из создателей статистической физики, Людвиг Больцман, сказал об уравнениях Максвелла: «Не Бог ли начертал эти письмена?»
13
14. Уравнение Шредингера.Уравнение, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах. Играет в квантовой механике такую же важную роль, как уравнение второго закона Ньютона в классической механике.
14

ОСНОВНЫЕ МАТЕМАТИЧЕСКИЕ ФОРМУЛЫ | Социальная сеть работников образования

Образование — то, что остается после того, как забыто все, чему учили в школе.

 

Игорь  Хмелинский, новосибирский учёный, ныне работающий в Португалии, доказывает, что без прямого запоминания текстов и формул развитие абстрактной памяти у детей затруднительно. Приведу выдержки из его статьи  "Уроки образовательных реформ в Европе и странах бывшего СССР"

Заучивание наизусть и долговременная память

Незнание таблицы умножения имеет и более серьезные последствия, чем неспособность обнаружить ошибки в расчетах на калькуляторе. Наша долговременная память работает по принципу ассоциативной базы данных, то есть, одни элементы информации при запоминании оказываются связанными с другими на основе ассоциаций, установленных в момент знакомства с ними. Поэтому, чтобы в голове образовалась база знаний в какой-либо предметной области, например, в арифметике, нужно для начала выучить хоть что-то наизусть. Далее, вновь поступающая информация попадет из кратковременной памяти в долговременную, если в течение короткого промежутка времени (несколько дней) мы столкнемся с нею многократно, и, желательно, в разных обстоятельствах (что способствует созданию полезных ассоциаций). Однако при отсутствии в постоянной памяти знаний из арифметики, вновь поступающие элементы информации связываются с элементами, которые к арифметике никакого отношения не имеют – например, личностью преподавателя, погодой на улице и т.п. Очевидно, такое запоминание никакой реальной пользы учащемуся не принесет – поскольку ассоциации уводят из данной предметной области, то никаких знаний, относящихся к арифметике, учащийся вспомнить не сможет, кроме смутных идей о том, что он вроде бы что-то когда-то об этом должен был слышать. Для таких учащихся роль недостающих ассоциаций обычно выполняют разного рода подсказки – списать у коллеги, воспользоваться наводящими вопросами в самой контрольной, формулами из списка формул, которым пользоваться разрешено, и т.п. В реальной жизни, без подсказок, такой человек оказывается совершенно беспомощным и неспособным применить имеющиеся у него в голове знания.

           Формирование математического аппарата, при котором формулы не заучиваются, происходит медленнее, нежели в противном случае. Почему? Во-первых, новые свойства, теоремы, взаимосвязи между математическими объектами почти всегда используют какие-то особенности ранее изученных формул и понятий. Концентрировать внимание ученика на новом материале будет сложнее, если эти особенности не смогут извлекаться из памяти за короткий промежуток времени. Во-вторых, незнание формул наизусть препятствует поиску решения содержательных задач с большим количеством мелких операций, в которых требуется не только провести определенные преобразования, но и выявить последовательность этих ходов, анализируя применение нескольких формул на два-три шага вперед.

Практика показывает, что интеллектуальное и математическое развитие ребенка, формирование его базы знаний и навыков, происходит значительно быстрее, если большая часть используемой информации (свойства и формулы) находиться в голове. И чем прочнее и дольше она там удерживается, тем лучше.

НАДО ЛИ ВАС ДАЛЬШЕ УБЕЖДАТЬ В ТОМ, ЧТО ФОРМУЛЫ НАДО ЗНАТЬ НАИЗУСТЬ? 

Готовим к публикации пост с формулами / Хабр

В последнее время на хабре появилось много постов с математическими формулами. Например, нельзя не вспомнить серию статей maisvendoo о теоретической механике.

В связи с этим стал актуальным вопрос о выборе удобного инструмента для создания и подготовки таких постов. SeptiM предложил скрипт, преобразующий маркдаун-разметку + латех в html-код. Я решил развить идею и упростить инструмент, и сделал для этих же целей онлайн-редактор с поддержкой латеха и маркдауна:



Редактор математических текстов

В редакторе удобно набирать текст с большим количеством формул и сразу видеть результат. Вы форматируете текст в маркдауне, вводите формулы на латехе и получаете html-код.

Рассмотрим пример. Фрагмент

Формула для решения квадратного уравнения <nobr>_ax_^2^ + _bx_ + _c_ = 0</nobr> имеет вид

$$
x_{1,2} = {-b\pm\sqrt{b^2 - 4ac} \over 2a}
$$ (1)

превращается в


Формула для решения квадратного уравнения ax2 + bx + c = 0 имеет вид




Особенности редактора

Редактор сохраняет вводимый текст в localStorage, чтобы при сбоях браузера, операционной системы, компьютера или электропитания ваш труд не пропадал.

Есть экспорт в вариант html-разметки, понятной хабрапарсеру (который игнорирует атрибуты style и теги <p>, но понимает «тег» <source> и переносы строк).

Редактор работает в браузере, обращается на сервер только за формулами в режиме предпросмотра.

Некоторых возможностей в маркдауне нет. Для вставки картинок с выравниванием или указанием размеров используйте голый html.


Математические формулы в вебе

На сайтах встречаются два способа встраивания латеха. Формулы либо рендерятся на сервере и отдаются как картинки, либо рендерятся на клиенте.

Существующие решения мне не нравились. Сервис codecogs.com для серверного рендеринга иногда глючил: генерировал картинки со слишком большими верхними и нижними индексами, а потом и кешировал их. JS-рендерер MathJax делает одну и ту же работу по отрисовке каждый раз на всех компьютерах и мобильных, да и содержит ограниченный набор команд.

Поэтому еще раньше я сделал свой сервис генерации svg- и png-картинок с формулами. В редакторе используются svg-картинки, чтобы формулы красиво смотрелись на ретине.


Подсветка синтаксиса

Больше всего я доволен подсветкой синтаксиса. Её удалось совместить с браузерной проверкой правописания и сделать достаточно быстрой для работы на лету:



К сожалению, подсветка не всегда работает корректно (и никогда полностью не будет, потому что в основе лежит парсер на регулярных выражениях). Однако задачу ориентирования по тексту этот способ решает хорошо. Сообщайте о багах, буду пытаться их исправлять.


План развития

Со временем я хочу сделать поддержку клавиатурных сочетаний, доработать анимацию (не во всех браузерах сейчас плавная), добавить открытие файлов через drag & drop, разобраться с выравниванием формул по базовой линии в режиме предпросмотра.

Код редактора, как и сервиса генерации картинок, выложен на гитхабе. Форкайте и присылайте пул-реквесты 🙂


Благодарности

Спасибо пользователю maisvendoo за тестирование. В редакторе используется парсер markdown-it. Идея подсветки найдена в проекте LDT.

Все формулы по математике - Формулы под рукой

Не решается задачка? Наш сайт поможет тебе в учебе, подготовке к сложным экзаменам, контрольным, олимпиадам, сессиям, ЕГЭ.

ФОРМУЛЫ ПО АЛГЕБРЕ

ФОРМУЛЫ ПО ГЕОМЕТРИИ

ФОРМУЛЫ ПО ТРИГОНОМЕТРИИ

Обладатель премии Эйнштейна, известнейший британский исследователь в области теоретический физики Стивен Хокинг однажды рассказал, что получил должность профессора математики в Оксфордском университете, не имея специального образования. На тот момент за его плечами были лишь изрядно подзабытые школьные знания по математике. Царицу наук постигал «на ходу», читая студенческий учебник с опережением программы на две недели. Впоследствии студенты Хокинга вспоминали его занятия как исключительно познавательные и захватывающие!

Такие примеры вдохновляют, вселяют уверенность, что и каждый из нас может с таким же успехом освежить «хорошо забытое». А там и новый вектор развития появится.

Чтобы вспомнить (или освоить!) школьный материал было легче, предлагаем листать не страницы учебников и справочной литературы, а воспользоваться нашим сайтом, где удобная навигация и система поиска позволят быстро отыскать нужную формулу по предметам:

  • арифметика;
  • алгебра;
  • геометрия;
  • физика;
  • химия.

От теории к практике

Бывает, что и материал знаком, да и формулы, теоремы и аксиомы по нужной теме — вот они, а задачка не поддается. Педагогический «диагноз»: нет опыта. Приобретается этот опыт при помощи решения типовых уравнений и задач. Предлагаем наиболее удачные и интуитивно понятные методики, которые уже помогли не одному ученику овладеть инструментарием точных наук!

Быстрее, выше, сильнее!

Возможно, сейчас ты и считаешь, что выучить все школьные формулы невозможно. Но на самом деле формул, необходимых для решения задач школьного уровня по математике, не более двухсот, а по физике — и того меньше! А это значит, что, заглядывая в наши справочники и освоив принципы решения типовых задач, можно постепенно запомнить все базовые формулы!

Какими бы сложными ни казались тебе задания твоих преподавателей сейчас, через какое-то время школьные, да и институтские стены могут показаться тебе тесными.

На нашем сайте собраны как часто используемые, так и гораздо более сложные формулы. Если захочешь знать больше, чем написано в школьном учебнике, начни с аксиомы — слов Марка Твена, который «никогда не позволял, чтобы школьные занятия мешали образованию!».

Список математических формул

Коэффициенты тригонометрии right triangle `sin alpha = (опп.) / (Бедро)` `` противоположность: противоположно
`бедро": гипотенуза
`cos alpha = (прил.) / (Бедро.)` `прил .: соседние
` бедро`: гипотенуза
`tan alpha = (опп.) / (Прил.)` `опп.: Напротив
` прил .: соседние
Фундаментальные идентичности `sin ^ 2 alpha + cos ^ 2 alpha = 1`` tan alpha = (sin alpha) / (cos alpha) `` tan ^ 2 alpha + 1 = 1 / (cos ^ 2 альфа) `
acutangle triangle Закон синусов
(aka sine rule)
`(грех A) / a = (грех B) / b = (грех C) / c`
Закон косинусов
(иначе косинусное правило)
`a ^ 2 = b ^ 2 + c ^ 2-2bc cos A`
формула Герона `A = sqrt (s (s-a) (s-b) (s-c))`
`s = (a + b + c) / 2`
Точные значения `sin (pi / 6) = 1 / 2`` cos (pi / 6) = sqrt (3) / 2` `tan (pi / 6) = sqrt (3) / 3`
`sin (pi / 4) = sqrt (2) / 2`` cos (pi / 4) = sqrt (2) / 2` `tan (pi / 4) = 1`
`sin (pi / 3) = sqrt (3) / 2`` cos (pi / 3) = 1 / 2` `tan (pi / 3) = sqrt (3)`
Угловые отношения `sin (-альфа) = - sin alpha`` cos (- альфа) = cos alpha` `tan (-alpha) = - tan alpha`
`sin (pi-alpha) = sin alpha`` cos (pi-alpha) = - cos alpha` `tan (pi-alpha) = - tan alpha`
`sin (pi + alpha) = - sin alpha`` cos (pi + alpha) = - cos alpha` `tan (pi + alpha) = tan alpha`
`sin (pi / 2-alpha) = cos alpha`` cos (pi / 2-alpha) = sin alpha` `tan (pi / 2-alpha) = 1 / (tan alpha)`
`sin (pi / 2 + alpha) = cos alpha`` cos (pi / 2 + alpha) = - sin alpha` `tan (pi / 2 + alpha) = - 1 / (tan alpha) `
`sin ((3pi) / 2 - alpha) = - cos alpha`` cos ((3pi) / 2 - alpha) = - sin alpha` `tan ((3pi) / 2 - alpha) = 1 / (загар альфа) `
`sin ((3pi) / 2 + alpha) = - cos alpha`` cos ((3pi) / 2 + alpha) = sin alpha` `tan ((3pi) / 2 + alpha) = - 1 / (загар альфа) `
Тригонометрические уравнения `sin x = sin alpha hArr x = alpha + 2kpi vv x = pi - alpha + 2kpi, k в ZZ`
`cos x = cos alpha hArr x = alpha + 2kpi vv x = - alpha + 2kpi, k в ZZ`
`tan x = tan альфа hArr x = альфа + kpi, k в ZZ`
Формулы суммы `sin (a + b) = sin a xx cos b + sin b xx cos a`
`cos (a + b) = cos a xx cos b - sin a xx sin b`
`tan (a + b) = (tan a + tan b) / (1 - tan a xx tan b)`
Разностные формулы `sin (a-b) = sin a xx cos b - sin b xx cos a`
`cos (a-b) = cos a xx cos b + sin a xx sin b`
`tan (a-b) = (tan a - tan b) / (1 + tan a xx tan b)`
Формулы для двух углов `sin (2a) = 2xxsin a xx cos a`
`cos (2a) = cos ^ 2 a - sin ^ 2 a`
`tan (2a) = (2 xx tan a) / (1 - tan ^ 2 a)`

формул Excel: сложные формулы

Урок 3: Сложные формулы

/ ru / excelformulas / простые формулы / содержание /

Введение

Простая формула - это математическое выражение с одним оператором, например 7 + 9 . Комплексная формула имеет более одного математического оператора, например 5 + 2 * 8 . Если в формуле имеется более одной операции, порядок операций сообщает вашей электронной таблице, какую операцию рассчитать первой.Для того, чтобы использовать сложные формулы, вам необходимо понять порядок операций.

Дополнительно: загрузите файл нашего примера для этого урока.

Посмотрите видео ниже, чтобы узнать больше о сложных формулах.

Порядок операций

Все программы работы с электронными таблицами рассчитывают формулы на основе следующего порядка операций :

  1. Операции, заключенные в скобок вычитание , в зависимости от того, что наступит раньше

Мнемоника, которая поможет вам запомнить заказ: PEMDAS или P аренда E xcuse M y D ear A и S союзник.

Нажмите стрелки в слайд-шоу ниже, чтобы узнать больше о том, как порядок операций используется для вычисления сложных формул.

  • Хотя эта формула может показаться действительно сложной, мы можем шаг за шагом использовать порядок операций, чтобы найти правильный ответ.

  • Сначала мы начнем с вычисления чего-либо в скобках. В этом случае нужно вычислить только одну вещь: 6-3 = 3.

  • Как видите, формула уже выглядит немного проще.2 = 4.

  • Далее мы решим любое умножение и деление, работая слева направо. Поскольку операция деления выполняется перед умножением, она рассчитывается первой: 3/4 = 0,75.

  • Теперь мы рассчитаем нашу оставшуюся операцию умножения: 0,75 * 4 = 3.

  • Далее мы вычислим любое сложение или вычитание, снова работая слева направо. Дополнение идет первым: 10 + 3 = 13.

  • Наконец, у нас есть одна оставшаяся операция вычитания: 13-1 = 12.

  • И теперь у нас есть ответ: 12. Это тот же самый результат, который вы получите, если введете формулу в электронную таблицу.

Использование скобок в формуле может быть очень важным. Из-за порядка операций, он может полностью изменить ответ. Давайте попробуем ту же проблему сверху, но на этот раз мы добавим скобки к последней части.

Создание сложных формул

В приведенном ниже примере мы продемонстрируем сложную формулу с использованием порядка операций.Здесь мы хотим рассчитать стоимость налога с продаж для кейтеринга. Для этого мы напишем нашу формулу как = (D2 + D3) * 0,075 в ячейке D4 . Эта формула сложит цены наших товаров вместе, а затем умножит это значение на 7,5% налоговую ставку (которая обозначается как 0,075), чтобы рассчитать стоимость налога с продаж.

Затем электронная таблица следует порядку операций и сначала добавляет значения в круглых скобках: (44,85 + 39,90) = 84,75 .Затем он умножает это значение на налоговую ставку: $ 84,75 * 0,075 . Результат покажет, что налог с продаж составляет $, 6.36 .

Особенно важно вводить сложные формулы с правильным порядком операций. В противном случае таблица не будет точно рассчитывать результаты. В нашем примере, если скобок не включены, умножение вычисляется первым, и результат неверен. Скобки - это лучший способ определить, какие вычисления будут выполняться первыми в формуле.

Для создания сложной формулы с использованием порядка операций:

В нашем примере ниже мы будем использовать ссылок на ячейки вместе с числовыми значениями , чтобы создать сложную формулу, которая будет рассчитывать общую стоимость для счета за питание. Формула рассчитает стоимость для каждого пункта меню и сложит эти значения вместе.

  1. Выберите ячейку , которая будет содержать формулу. В нашем примере мы выберем ячейку C4 .
  2. Введите формулу . В нашем примере мы введем = B2 * C2 + B3 *
.
Math Formulas | Основные математические формулы для CBSE Class 6-12 с PDFs
    • Классы
      • Класс 1 - 3
      • Класс 4 - 5
      • Класс 6 - 10
      • Класс 11 - 12
    • КОНКУРСЫ
      • BBS
      • 000000000 Книги
        • NCERT Книги для 5 класса
        • NCERT Книги Класс 6
        • NCERT Книги для 7 класса
        • NCERT Книги для 8 класса
        • NCERT Книги для 9 класса 9
        • NCERT Книги для 10 класса
        • NCERT Книги для 11 класса
        • NCERT Книги для 12-го класса
      • NCERT Exemplar
        • NCERT Exemplar Class 8
        • NCERT Exemplar Class 9
        • NCERT Exemplar Class 10
        • NCERT Exemplar Class 11
        • NCERT Exemplar Class 12
        • 9000al Aggar Agard Agard Agard Agard Agulis Class 12
          • RS Решения Aggarwal класса 10
          • RS Решения Aggarwal класса 11
          • RS Решения Aggarwal класса 10
          • 90 003 Решения RS Aggarwal Class 9
          • Решения RS Aggarwal Class 8
          • Решения RS Aggarwal Class 7
          • Решения RS Aggarwal Class 6
        • Решения RD Sharma
          • Решения RD Sharma класса 9
          • Решения RD Sharma Class 7 Решения RD Sharma Class 8
          • Решения RD Sharma Class 9
          • Решения RD Sharma Class 10
          • Решения RD Sharma Class 11
          • Решения RD Sharma Class 12
        • ФИЗИКА
          • Механика
          • 000000 Электромагнетизм
        • ХИМИЯ
          • Органическая химия
          • Неорганическая химия
          • Периодическая таблица
        • МАТС
          • Теорема Пифагора
          • Отношения и функции
          • Последовательности и серии
          • Таблицы умножения
          • Детерминанты и матрицы
          • Прибыль и убыток
          • Полиномиальные уравнения
          • Делительные дроби
        • 000 ФОРМУЛЫ
          • Математические формулы
          • Алгебровые формулы
          • Тригонометрические формулы
          • Геометрические формулы
        • КАЛЬКУЛЯТОРЫ
          • Математические калькуляторы
          • S000
          • 80003 Pегипс Класс 6
          • Образцы документов CBSE для класса 7
          • Образцы документов CBSE для класса 8
          • Образцы документов CBSE для класса 9
          • Образцы документов CBSE для класса 10
          • Образцы документов CBSE для класса 11
          • Образец образца CBSE pers for Class 12
        • CBSE Предыдущий год Вопросник
          • CBSE Предыдущий год Вопросники Класс 10
          • CBSE Предыдущий год Вопросник класс 12
        • HC Verma Solutions
          • HC Verma Solutions Класс 11 Физика
          • Решения HC Verma Class 12 Physics
        • Решения Lakhmir Singh
          • Решения Lakhmir Singh Class 9
          • Решения Lakhmir Singh Class 10
          • Решения Lakhmir Singh Class 8
        • Примечания
        • CBSE
        • Notes
            CBSE Класс 7 Примечания CBSE
          • Класс 8 Примечания CBSE
          • Класс 9 Примечания CBSE
          • Класс 10 Примечания CBSE
          • Класс 11 Примечания CBSE
          • Класс 12 Примечания CBSE
        • Примечания пересмотра
        • CBSE Редакция
        • CBSE
        • CBSE Class 10 Примечания к пересмотру
        • CBSE Class 11 Примечания к пересмотру 9000 4
        • Замечания по пересмотру CBSE класса 12
      • Дополнительные вопросы CBSE
        • Дополнительные вопросы CBSE 8 класса
        • Дополнительные вопросы CBSE 8 по естественным наукам
        • CBSE 9 класса Дополнительные вопросы
        • CBSE 9 дополнительных вопросов по науке CBSE
        • 9000 Класс 10 Дополнительные вопросы по математике
        • CBSE Класс 10 Дополнительные вопросы по науке
      • Класс CBSE
        • Класс 3
        • Класс 4
        • Класс 5
        • Класс 6
        • Класс 7
        • Класс 8
        • Класс 9
        • Класс 10
        • Класс 11
        • Класс 12
      • Решения для учебников
    • Решения NCERT
      • Решения NCERT для класса 11
          Решения NCERT для физики класса 11
        • Решения NCERT для класса 11 Химия
        • Решения для класса 11 Биология
        • NCERT Решения для класса 11 Математика
        • 9 0003 NCERT Solutions Class 11 Бухгалтерия
        • NCERT Solutions Class 11 Бизнес исследования
        • NCERT Solutions Class 11 Экономика
        • NCERT Solutions Class 11 Статистика
        • NCERT Solutions Class 11 Коммерция
      • NCERT Solutions для класса 12
        • NCERT Solutions для Класс 12 Физика
        • Решения NCERT для 12 класса Химия
        • Решения NCERT для 12 класса Биология
        • Решения NCERT для 12 класса Математика
        • Решения NCERT Класс 12 Бухгалтерский учет
        • Решения NCERT Класс 12 Бизнес исследования
        • Решения NCERT Класс 12 Экономика
        • NCERT Solutions Class 12 Бухгалтерский учет Часть 1
        • NCERT Solutions Class 12 Бухгалтерский учет Часть 2
        • NCERT Solutions Class 12 Микроэкономика
        • NCERT Solutions Class 12 Коммерция
        • NCERT Solutions Class 12 Макроэкономика
      • NCERT Solutions Для Класс 4
        • Решения NCERT для математики класса 4
        • Решения NCERT для класса 4 EVS
      • Решения NCERT для класса 5
        • Решения NCERT для математики класса 5
        • Решения NCERT для класса 5 EVS
      • Решения NCERT для класса 6
        • Решения NCERT для класса 6 Maths
        • Решения NCERT для класса 6 Science
        • Решения NCERT для класса 6 Общественные науки
        • Решения NCERT для класса 6 Английский
      • Решения NCERT для класса 7
        • Решения NCERT для класса 7 Математика
        • Решения NCERT для 7 класса Science
        • Решения NCERT для 7 класса Общественные науки
        • Решения NCERT для 7 класса Английский
      • Решения NCERT для 8 класса Математические решения
        • для 8 класса Математика
        • Решения NCERT для класса 8 Science
        • Решения NCERT для класса 8 Общественные науки
        • NCERT Solutio ns для класса 8 Английский
      • Решения NCERT для класса 9
        • Решения NCERT для класса 9 Общественные науки
      • Решения NCERT для класса 9 Математика
        • Решения NCERT для класса 9 Математика Глава 1
        • Решения NCERT Для класса 9 Математика 9 класса Глава 2
        • Решения NCERT для математики 9 класса Глава 3
        • Решения NCERT для математики 9 класса Глава 4
        • Решения NCERT для математики 9 класса Глава 5
        • Решения NCERT для математики 9 класса Глава 6
        • Решения NCERT для Математика 9 класса Глава 7
        • Решения NCERT для математики 9 класса Глава 8
        • Решения NCERT для математики 9 класса Глава 9
        • Решения NCERT для математики 9 класса Глава 10
        • Решения NCERT для математики 9 класса Глава 11
        • Решения NCERT для Математика 9 класса Глава 12
        • Решения NCERT для математики 9 класса Глава 13
        • Решения NCERT для математики 9 класса Глава 14
        • Решения NCERT для математики класса 9 Глава 15
      • Решения NCERT для науки 9 класса
        • Решения NCERT для науки 9 класса Глава 1
        • Решения NCERT для науки 9 класса Глава 2
        • Решения NCERT для класса 9 Наука Глава 3
        • Решения NCERT для 9 класса Наука Глава 4
        • Решения NCERT для 9 класса Наука Глава 5
        • Решения NCERT для 9 класса Наука Глава 6
        • Решения NCERT для 9 класса Наука Глава 7
        • Решения NCERT для 9 класса Научная глава 8
        • Решения NCERT для 9 класса Научная глава
        • Научные решения NCERT для 9 класса Научная глава 10
        • Научные решения NCERT для 9 класса Научная глава 12
        • Научные решения NCERT для 9 класса Научная глава 11
        • Решения NCERT для 9 класса Научная глава 13
        • Решения NCERT для 9 класса Научная глава 14
        • Решения NCERT для класса 9 Science Глава 15
      • Решения NCERT для класса 10
        • Решения NCERT для класса 10 Общественные науки
      • Решения NCERT для математики класса 10
        • Решения NCERT для математики класса 10 Глава 1
        • Решения NCERT для математики класса 10 Глава 2
        • решения NCERT для математики класса 10 глава 3
        • решения NCERT для математики класса 10 глава 4
        • решения NCERT для математики класса 10 глава 5
        • решения NCERT для математики класса 10 глава 6
        • решения NCERT для математики класса 10 Глава 7
        • решения NCERT для математики класса 10 глава 8
        • решения NCERT для математики класса 10 глава 9
        • решения NCERT для математики класса 10 глава 10
        • решения NCERT для математики класса 10 глава 11
        • решения NCERT для математики класса 10, глава 12
        • Решения NCERT для математики класса 10, глава 13
        • соль NCERT Решения для математики класса 10 Глава 14
        • Решения NCERT для математики класса 10 Глава 15
      • Решения NCERT для науки 10 класса
        • Решения NCERT для науки 10 класса Глава 1
        • Решения NCERT для науки 10 класса Глава 2
        • Решения NCERT для науки 10 класса, глава 3
        • Решения NCERT для науки 10 класса, глава 4
        • Решения NCERT для науки 10 класса, глава 5
        • Решения NCERT для науки 10 класса, глава 6
        • Решения NCERT для науки 10 класса, глава 7
        • Решения NCERT для науки 10 класса, глава 8
        • Решения NCERT для науки 10 класса, глава 9
        • Решения NCERT для науки 10 класса, глава 10
        • Решения NCERT для науки 10 класса, глава 11
        • Решения NCERT для науки 10 класса, глава 12
        • Решения NCERT для 10 класса Science Глава 9
        • Решения NCERT для 10 класса Science Глава 14
        • Решения NCERT для науки 10 класса Глава 15
        • Решения NCERT для науки 10 класса Глава 16
      • Программа NCERT
      • NCERT
    • Коммерция
      • Класс 11 Коммерческая программа Syllabus
      • Учебный курс по бизнес-классу 11000
      • Учебная программа по экономическому классу
    • Учебная программа по коммерческому классу
      • Учебная программа по 12 классу
      • Учебная программа по 12 классу
      • Учебная программа по экономическому классу
          000000000000000000
        • Образцы коммерческих документов класса 11
        • Образцы коммерческих документов класса 12
      • Решения TS Grewal
        • Решения TS Grewal Класс 12 Бухгалтерский учет
        • Решения TS Grewal Класс 11 Бухгалтерский учет
      • Отчет о движении денежных средств
      • eurship
      • Защита потребителей
      • Что такое фиксированный актив
      • Что такое баланс
      • Формат баланса
      • Что такое акции
      • Разница между продажами и маркетингом
    • P000S Документы ICSE
    • ML Решения Aggarwal
      • ML Решения Aggarwal Class 10 Maths
      • ML Решения Aggarwal Class 9 Математика
      • ML Решения Aggarwal Class 8 Maths
      • ML Решения Aggarwal Class 7 Математические решения
      • ML 6 0004
      • ML 6
    • Selina Solutions
      • Selina Solution для 8 класса
      • Selina Solutions для 10 класса
      • Selina Solution для 9 класса 9
    • Frank Solutions
      • Frank Solutions для класса 10 Maths
      • Frank Solutions для класса 9 Maths
    • ICSE Class 9000 2
    • ICSE Class 6
    • ICSE Class 7
    • ICSE Class 8
    • ICSE Class 9
    • ICSE Class 10
    • ISC Class 11
    • ISC Class 12
  • IAS
  • Сервисный экзамен
  • UPSC Syllabus
  • Бесплатно IAS Prep
  • Текущая информация
  • Список статей IAS
  • IAS 2019 Mock Test
    • IAS 2019 Mock Test 1
    • IAS 2019 Mock Test 2
    • KPSC KAS экзамен
    • UPPSC PCS экзамен
    • MPSC экзамен
    • RPSC RAS ​​экзамен
    • TNPSC группа 1
    • APPSC группа 1
    • BPSC экзамен
    • экзамен
    • JPS
    • экзамен
    • PMS
    • экзамен
    • экзамен
    • экзамен
    • экзамен
    • PMS
    • экзамен
    • экзамен
    • экзамен
    • экзамен
    • экзамен
  • Вопросник UPSC 2019
    • Ключ ответа UPSC 2019
  • Коучинг IAS
    • IA S Коучинг Бангалор
    • IAS Коучинг Дели
    • IAS Коучинг Ченнаи
  • .

    Комплексные числа


    A Комплексный номер

    Комплексное число представляет собой комбинацию действительного числа
    и мнимого числа

    Вещественные числа это числа типа:

    1 12,38 −0,8625 3/4 √2 1998

    Практически любое число, о котором вы можете подумать, является действительным числом!

    Воображаемые числа, когда в квадрате дают отрицательного результата .

    Обычно этого не происходит, потому что:

    Но только представьте, что такие числа существуют, потому что мы хотим их.

    Давайте немного поговорим о воображаемых числах ...

    Мнимое число «единица» (например, 1 для вещественных чисел) - это i, то есть квадратный корень из -1

    Потому что, когда мы возводим квадрат в квадрат, мы получаем -1

    i 2 = −1

    примеров мнимых чисел:

    3i 1.04i -2,8i 3i / 4 (√2) и 1998i

    И мы держим это маленькое «я» там, чтобы напомнить нам, что нам нужно умножить на √ − 1

    Комплексные числа

    Когда мы объединяем действительное число и мнимое число, мы получаем комплексное число :

    Примеры:

    1 + I 39 + 3i 0,8 - 2,2i -2 + πi √2 + I / 2

    Может ли число быть комбинацией двух чисел?

    Можем ли мы составить число из двух других чисел? Мы можем точно!

    Мы делаем это с дробями все время.Фракция 3 / 8 - это число, состоящее из 3 и 8. Мы знаем, что это означает «3 из 8 равных частей».

    Ну, комплексное число - это просто , два числа, сложенные вместе (действительное и мнимое число).

    Любая часть может быть нулевой

    Итак, комплексное число имеет действительную и мнимую части.

    Но любая часть может быть 0 , поэтому все действительные числа и мнимые числа также являются комплексными числами.

    Комплекс № Real Part Мнимая часть
    3 + 2i 3 2
    5 5 0 Чисто Реальный
    −6i 0 −6 Чисто Воображаемый

    Сложно?

    Комплекс делает не означает сложный.

    Это означает, что два типа чисел, действительные и мнимые, вместе образуют комплекс , как комплекс зданий (здания, соединенные вместе).

    Визуальное объяснение

    Вы знаете, как числовая линия переходит влево-вправо ?

    Хорошо, давайте сделаем так, чтобы мнимые цифры пошли вверх :

    И мы получаем Комплексный самолет

    Комплексное число теперь может быть показано в виде точки:


    Комплекс № 3 + 4 и

    Добавление

    Чтобы добавить два комплексных числа, мы добавляем каждую часть отдельно:

    (a + b i ) + (c + d i ) = (a + c) + (b + d) i

    Пример: добавить комплексные номера 3 + 2 i и 1 + 7 i

    • добавить действительные числа, а
    • добавить мнимые числа:

    (3 + 2i) + (1 + 7i)
    = 3 + 1 + (2 + 7) i
    = 4 + 9i

    Давайте попробуем другое:

    Пример: добавить комплексные номера 3 + 5 i и 4 - 3 i

    (3 + 5 i ) + (4 - 3 i )
    = 3 + 4 + (5 - 3) i
    = 7 + 2 i

    На комплексном самолете это:

    Умножение

    Умножить комплексные числа:

    Каждая часть первого комплексного числа умножается на
    каждая часть второго комплексного числа

    Просто используйте «FOIL», что означает « F irsts, O uters, I nners, L asts» (см. Биноминальное умножение для более подробной информации):

    • : a × c
    • Outers: a × d i
    • Inners: b i × c
    • Продолжительность: b i × d i

    (a + b i ) (c + d i ) = ac + ad i + bc i + bd i 2

    Как это:

    Пример: (3 + 2i) (1 + 7i)

    (3 + 2i) (1 + 7i) = 3 × 1 + 3 × 7i + 2i × 1 + 2i × 7i

    = 3 + 21i + 2i + 14i 2

    = 3 + 21i + 2i - 14 (потому что i 2 = -1)

    = −11 + 23i

    А это:

    Пример: (1 + i) 2

    (1 + i) (1 + i) = 1 × 1 + 1 × i + 1 × i + i 2

    = 1 + 2i - 1 (потому что i 2 = -1)

    = 0 + 2i

    Но есть более быстрый путь!

    Используйте это правило:

    (a + b i ) (c + d i ) = (ac-bd) + (ad + bc) i

    Пример: (3 + 2i) (1 + 7i) = (3 × 1 - 2 × 7) + (3 × 7 + 2 × 1) i = −11 + 23i

    Почему это правило работает?

    Это просто метод "ФОЛЬГ" после небольшой работы:

    (a + b i ) (c + d i ) = ac + ad i + bc i + bd i 2 FOIL метод

    = ac + ad i + bc i - bd (потому что i 2 = -1)

    = (ac - bd) + (ad + bc) i (собирая аналогичные термины)

    И вот мы имеем (ac - bd) + (ad + bc) i .

    Это правило, конечно, быстрее, но если вы забудете его, просто запомните метод FOIL.

    Давайте попробуем я 2

    Просто для удовольствия, давайте использовать метод для расчета I 2

    Пример: я 2

    Мы можем написать i с действительной и мнимой частью как 0 + i

    i 2 = (0 + i) 2 = (0 + i) (0 + i)

    = (0 × 0 - 1 × 1) + (0 × 1 + 1 × 0) i

    = -1 + 0 i

    = -1

    И это хорошо согласуется с определением, что я 2 = -1

    Так все прекрасно работает!

    Узнайте больше о умножении сложных чисел.

    Конъюгаты

    Нам нужно будет узнать о конъюгатах через минуту!

    Конъюгат - это то, где мы меняем знак посередине следующим образом:

    Конъюгат часто пишется с чертой над ним:

    Пример:

    5 - 3 i = 5 + 3 i

    Деление

    Конъюгат используется, чтобы помочь сложному делению.

    Хитрость в том, чтобы умножить верхнюю и нижнюю на конъюгат нижней .

    Пример: сделать это деление:

    2 + 3 i 4 - 5 i

    Умножьте верх и низ на сопряжение 4 - 5 i :

    2 + 3 i 4 - 5 i × 4 + 5 i 4 + 5 i = 8 + 10 i + 12 i + 15 я 2 16 + 20 я - 20 я - 25 я 2

    Теперь помните, что я 2 = -1, так что:

    = 8 + 10 i + 12 i - 15 16 + 20 i - 20 i + 25

    Добавить условия лайка (и обратите внимание, как внизу 20 i - 20 i отменяет!):

    = −7 + 22 i 41

    Наконец, мы должны положить ответ обратно в форму + b i :

    = −7 41 + 22 41 i

    СДЕЛАНО!

    Да, нужно немного подсчитать.Но это можно сделать .

    Умножение на конъюгат

    Хотя есть более быстрый путь.

    В предыдущем примере было интересно то, что произошло внизу:

    (4 - 5 i ) (4 + 5 i ) = 16 + 20 i - 20 i - 25 i 2

    Средние условия (20 i - 20 i ) отменяются! Также i 2 = −1, поэтому мы получим следующее:

    (4 - 5 i ) (4 + 5 i ) = 4 2 + 5 2

    Что на самом деле довольно простой результат.Общее правило:

    (a + b i ) (a - b i ) = a 2 + b 2

    Мы можем использовать это, чтобы сэкономить время при делении, например:

    Пример: попробуем еще раз

    2 + 3 i 4 - 5 i

    Умножьте верх и низ на сопряжение 4 - 5 i :

    2 + 3 i 4 - 5 i × 4 + 5 i 4 + 5 i = 8 + 10 i + 12 i + 15 я 2 16 + 25

    = −7 + 22 i 41

    И затем обратно в форму + b i :

    = −7 41 + 22 41 i

    СДЕЛАНО!

    Обозначение

    Мы часто используем z для комплексного числа.И Re () для действительной части и Im () для мнимой части, например:

    , который выглядит так на сложной плоскости:

    Набор Мандельброта

    Красивый набор Мандельброта (изображенный здесь) основан на комплексных числах.

    Это график того, что происходит, когда мы берем простое уравнение z 2 + c (оба комплексных числа) и снова и снова возвращаем результат обратно в z .

    Цвет показывает, как быстро z 2

    .

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о