Калькулятор золотого сечения: Онлайн калькулятор: Золотое сечение

Содержание

Калькулятор золотого сечения (золотой пропорции) онлайн

Золотое сечение — это особое соотношение сторон фигуры, которое наиболее приятно для созерцания. Это число известно с античных времен, а ученые эпохи Возрождения называли его божественной пропорцией. Число Фи — золотое сечение, приблизительно равное 1,618.

История

Особую красоту деления отрезка на стороны в соотношении 1/1,618 заметили еще античные ученые. Евклид в своих началах использовал этот метод при построении пентагона, а пифогорейцы рассматривали весь мир как царство математической гармонии и уделяли большое внимание соотношению 1/1,618. В 1202 году Леонардо Фибоначчи вывел особую последовательность, отношение членов которой стремилось к числу Фибоначчи. Лука Пачоли, один из величайших алгебраистов Италии, назвал это соотношение божественной пропорцией, связав свойства бога с числом Фи. Именно с этого момента золотое сечение начало активно использоваться в работах художников эпохи Возрождения и получило буквально мистический статус. По словам Кеплера, число Фи — бесценная жемчужина математики.

Число Фи в математике

Золотое сечение часто встречается в геометрии. Золотой прямоугольник — фигура на плоскости, длина и ширина которой соотносятся как 1/1,618. Примечательное свойство такого прямоугольника состоит в том, что при удалении из фигуры любого квадрата образуется новый прямоугольник с точно таким же соотношением сторон. Стоит упомянуть и пентаграмму — звездчатый многоугольник, стороны которого пересекаются в соответствии с правилом золотого сечения.

В арифметике число Фи встречается в упоминаемой выше последовательности Фибоначчи, так как lim(Fn/Fn-1) -> Фи. Кроме того, золотое сечение имеет интересное представление в других формах записи. Так, Фи представляется как бесконечная цепочка квадратных корней из единицы. А если привести Фи к цепному виду, то получится бесконечная дробь вида [1; 1, 1, 1, 1, 1…]

Число Фи в реальности

Мистический ореол вокруг золотого сечения возник благодаря такому явлению как «золотой числизм». Энтузиасты, задавшиеся целью найти эту пропорцию в как можно большем количестве реальных объектов или явлений, часто подгоняли результаты. К примеру, храм Парфенон всегда присутствует в списке объектов, которые построены с учетом божественной пропорции. Однако на деле соотношение ширины храма к его высоте составляет 1,74, а если исключить фронтон, то и вовсе 3.

После придания числу божественных свойств, многие художники и музыканты начали сознательно использовать это соотношение в своих работах. Леонардо да Винчи, Альбрехт Дюрер, Иоганн Бах, Ле Корбюзье, Густав Фехнер намеренно придавали своим произведениям форму, соответствующую числу Фи. Одним из современных примеров использования золотого сечения является мозаика Пенроуза — метод непериодического разбиения плоскости.

Несмотря на явное преувеличение свойств золотой пропорции, она все же встречается в реальности. Большинство спиралевидных объектов связны с числом Фи: раковины моллюсков, атмосферные вихри и даже галактики действительно соответствуют божественной пропорции.

Калькулятор золотого сечения

Если вы хотите использовать божественную пропорцию в своей работе, то наш калькулятор к вашим услугам. Для определения сторон золотого прямоугольника вам понадобится ввести одну из сторон, а программа определит вторую, соответствующую правилу золотого сечения. Прелесть калькулятора состоит в том, что он не просто умножает сторону на 1,618, а подбирает целое значение. Именно поэтому вам потребуется оперировать целыми числами, что удобно на практике.

Пример из реальной жизни

Живопись

Допустим, вы хотите сделать приятную с точки зрения математики картину, следовательно, вам нужно нарисовать ее на золотом прямоугольнике. Вам потребуется заказать холст определенного размера, и чтобы определить его размеры, используйте наш калькулятор. Пусть вы хотите писать на холсте, длина которого составит 120 см. Как узнать необходимую ширину? Введите это значение в ячейку A и получите ответ, равный 74 см.

Заключение

Божественная пропорция — мистическое соотношение, которое занимает умы математиков уже несколько тысячелетий. Возможно, именно число Фи содержит ответы на вечные вопросы о тайнах мироздания. Если вам потребуется создать объекты, соответствующие золотому сечению, используйте наш калькулятор, при помощи которого вы сможете подобрать целые числа.

Длина отрезков при золотом сечении

Калькулятор вычисляет длины отрезков при золотом сечении.

Давайте разберемся какое сечение называется золотым.

Это такой термин, который обозначает дележку отрезка на 2 в соотношении, когда часть побольше относится к меньшей, а весь отрезок к большей. Вы могли слышать данный термин еще как деление в среднем и крайнем отношениях.

Если наглядно, то этот термин можно представить так:

То есть данный калькулятор будет находить параметры, которые соответствуют золотому сечению.

The field is not filled.

‘%1’ is not a valid e-mail address.

Please fill in this field.

The field must contain at least% 1 characters.

The value must not be longer than% 1 characters.

Field value does not coincide with the field ‘%1’

An invalid character. Valid characters:’%1′.

Expected number.

It is expected a positive number.

Expected integer.

It is expected a positive integer.

The value should be in the range of [%1 .. %2]

The ‘% 1’ is already present in the set of valid characters.

The field must be less than 1%.

The first character must be a letter of the Latin alphabet.

Su

Mo

Tu

We

Th

Fr

Sa

January

February

March

April

May

June

July

August

September

October

November

December

century

B.C.

%1 century

An error occurred while importing data on line% 1. Value: ‘%2’. Error: %3

Unable to determine the field separator. To separate fields, you can use the following characters: Tab, semicolon (;) or comma (,).

%3.%2.%1%4

%3.%2.%1%4 %6:%7

s.sh.

u.sh.

v.d.

z.d.

yes

no

Wrong file format. Only the following formats: %1

Please leave your phone number and / or email.

Правило золотого сечения в живописи

Вероятно, вы часто встречали упоминание о «правиле золотого сечения» и его важности для художника. Что же это за правило и как его применять, расскажет этот материал.

ЧТО ТАКОЕ ЗОЛОТОЕ СЕЧЕНИЕ

Золотое сечение — это пропорциональное соотношение двух величин.

В численном выражении это бесконечное число, которое округляют до 1,618 и обозначают число золотого сечения греческой буквой Ф (фи). 

Если взять отрезок АВ и поделить его точкой С, то золотым сечением будет, когда меньший отрезок относится к большему так, как больший отрезок относится к целому.

Т.е. это пропорция, продолжающая саму себя.

Если вы посмотрите на изображение ракушки, то увидите наглядный пример этого правила — каждое последующее деление меньше предыдущего в соотношении золотой пропорции:

Мы можем найти подобные примеры во многих формах жизни: моллюски и земноводные, семечки у подсолнуха или шишки,  паутина, а также строение частей тела человека). 

Именно поэтому пропорция получила название «создающая жизнь».

Также золотое сечение называют пропорцией божественной гармонии. Это и понятно — природа столетиями оттачивала свои формы для того, чтобы получить жизнеспособные организмы в итоге пришла к этой пропорции с выражением 1,618. 

Вот еще несколько примеров правила золотого сечения:

  • направление ветра в урагане
  • распределение веток и листьев на деревьях
  • пропорции туловища ящериц
  • строение морских раковин
  • основы иконографии
  • строение молекулы ДНК
  • конфигурация уха
  • объем вдыхаемого и выдыхаемого воздуха в процессе дыхания
  • соотношение длины фаланг пальцев и кисти руки в целом

ИСПОЛЬЗОВАНИЕ ПРАВИЛА ЗОЛОТОГО СЕЧЕНИЯ

Человек в своей деятельности и искусстве многое берет от природы. Зачем изобретать велосипед, когда природа уже создала гармоничный и жизнеспособный аналог?

Золотое сечение в искусстве встречается во многих произведениях мировой архитектуры, дизайна и живописи.

Египетские пирамиды, собор Парижской Богоматери, Парфенон — все это образцы использования пропорции Золотого сечения в архитектуре.

ПрОПОРЦИЯ золотого сечения в живописи

Как же использовать эту гармоничную пропорцию в живописи и графике, в изображение на плоском листе?

Правило золотого сечения в картине проявляется делением ее на части четырьмя линиями — две из них горизонтальные,  и две вертикальные. Расположены они согласно пропорции 1,618.

ЧЕМ ВАЖНО ПРАВИЛО ЗОЛОТОГО СЕЧЕНИЯ?

То, что находится на этих линиях, наиболее важно для нашего глаза. 

Картину, построенную с использование золотого сечения мы воспринимаем как правильную и красивую.

Найдя эти линии у себя в картине, мы можем расположить значимые элементы так, чтобы работа в целом производила гармоничное впечатление.

Кроме того, на пересечении линий золотого сечения находятся особые зрительные центры. Они  расположены на расстоянии примерно 3/8 и 5/8 от краев изображения. Подмечено, что человек всегда концентрирует на них свое внимание.

Если вы посмотрите на картину И.Левитана, то очень четко видно, что в ней использовано правило золотого сечения.

Луна и ее отражение стоят на линии золотого сечения. Полоса леса в центре также помещается в пропорции золотого сечения.

Еще один пример. В картине Н.Ге «Александр Сергеевич Пушкин в селе Михайловском»  фигура главного героя также расположена на одной из линий золотого сечения.

Таким образом математические закономерности помогают выстраивать картину так, чтобы она выглядела гармонично и красиво, а зритель сразу обращал внимание на главное.

Выбрав формат листа или холста, расчертите его в пропорции золотого сечения. Используйте эти линии, чтобы разместить на них значимые элементы композиции. Это придаст вашей картине гармоничную структуру и упорядоченность.

ПрИНЦИП золотого сечения:


как построить линии в картине

1) Математический вариант

Для такого просчета удобно использовать онлайн калькуляторы.

Достаточно задать один из параметров, нажать кнопку «рассчитать», и система предоставит результат.

Вот пример удобного сервиса:

https://planetcalc.ru/1061/

Берем размер ширины или высоты картины, вводим в калькулятор и получаем размер, на каком расстоянии от края будут проходить линии золотого сечения.

Очень просто!

2) Геометрический вариант

Точки зрительных центров здесь находятся путем геометрических построений. Посмотрите фрагмент ВИДЕО из встречи в Перископе, где я наглядно показываю, как это делать:

3) Использование шаблона

Если вы делаете много небольших эскизов, то оптимальным для построения линий золотого сечения будет использование специальной линейки.

Если взять за основу 100, то линии золотого сечения будут проходить на отметках 38 и 62. Изготовьте такую линейку самостоятельно, отметив также делениями 10, 14, 24. Эти размеры составляют продолжение золотой пропорции, их можно использовать для размеров объектов или расстояний между ними, чтобы продолжить принцип гармоничных соотношений. 

А как правильно пользоваться линейкой, посмотрите в этом фрагменте из видео:

Выбирайте любой удобный способ и обязательно опробуйте его в создании собственных композиций.

А еще рекомендую рассмотреть работы разных художников и проанализировать, как они используют линии золотого сечения. Полагаю, вы найдете массу достойных примеров.

Если вам интересна эта тема, и вы хотите узнать больше о правиле золотого сечения и его практическом применении, то обратите внимание на книгу

Ф.В. Ковалева «Золотое сечение в живописи»

Это очень полезное издание по композиции!

Если статья была вам полезна, нажмите на кнопочку и поделитесь ей в соцсетях. Спасибо!

Больше полезных статей:

Золотая пропорция

Золотое сечение (ЗС) –это правило общей пропорции, которая создает универсальную композицию. Математики называют ее формулой божественной гармонии или асимметричной симметрией.
Общее определение правила ЗС –меньшая величина относится к большей, как большая к целому. Было рассчитано приблизительное число, равное 1,6180339887, это и есть коэффициент золотого сечения. Если смотреть в процентном

Что такое золотое сечение и как его понимать

Часто мы сталкиваемся с домами, предметами, строениями, растениями, которые нас чем-то завораживают. Люди издавна пытались понять, почему одно нам кажется красивым, другое нет, искали закономерности. И вроде нашли. Это некоторое соотношение частей, которое назвали золотым сечением.

О том, кто и когда придумал золотое сечение никто не знает точно. Кто-то приписывает открытие Пифагору, но первое упоминание нашли еще в «Началах» Евклида, а жил он в 3 веке до нашей эры. Так что находка явно давняя. Именно по этому принципу построены древнегреческие и римские храмы. Конечно, это могут быть совпадения, но очень уж странные и очень их много. Так что, скорее всего, они были в курсе идеальных пропорций.

Сохранившиеся постройки древности тоже подчинены правилу золотого сечения

Совершенно точно то, что Леонардо да Винчи искал подтверждение этому принципу в строении человеческого тела. И, что самое интересное, нашел. Те лица и тела, которые кажутся нам красивыми, имеют пропорции, которые как раз и подчиняются закону золотого сечения.

Формальное определение звучит и просто, и сложно. Его связывают с двумя разными по размеру отрезками. Звучит этот принцип примерно так: если отрезок разделить на две неравные части, то это деление будет пропорциональным, если большая часть отрезка относится к целому так же, как и меньшая часть к большему. Будет понятнее, если посмотреть на иллюстрацию и формулу.

Принцип и формула золотого сечения

На рисунке целый отрезок разделен так, что если а разделить на b, получим 1,1618, та же цифра получается, если целый отрезок разделить на большую часть — a. Это число и есть воплощением идеальной пропорции. Теперь, если посмотрите на картинку с Парфеноном, пропорции этого строения также подчиняются указанному соотношению.

Ту же закономерность можно представить в виде процентов. Может, кому-то так проще. Для того, чтобы деление целого было пропорциональным, части должны составлять 62% и 38%. Возможно, так будет проще запомнить.

Последовательность Фибоначчи — не только математическая формула

Эту закономерность развил дальше математик Фибоначчи. Он разработал числовую последовательность, элементы которой, начиная с девятого, подчиняются тому же закону. Графическое изображение этой последовательности — спираль. Если присмотреться, и в природе, и в архитектуре, и в человеческом теле пропорции красоты присутствуют.

Источник: http://stroychik.ru/raznoe/zolotoe-sechenie

Общие принципы и определение

Суть правила «золотого сечения» сводится к тому, что большая часть целого относится к целому точно так же, как и меньшая часть – к большей части и наоборот. В цифровом выражении эта пропорция равна примерно 1,618, иначе это число называют числом «Фи», в честь древнегреческого архитектора Фидия. Если рассматривать правило в процентном соотношении, то большая часть составляет 62% от целой величины, а меньшая – около 38%.

То же определение легко сформулировать иначе. Так, в геометрии принято изображать «золотой прямоугольник», меньшая из сторон которого относится к большей как 0,618 к 1. Если от этого прямоугольника «отрезать» квадрат со стороной, равной меньшей из сторон, вы получите новый «золотой прямоугольник», и так – до бесконечности. В итоге искомые прямоугольники образуют своего рода спираль.

Источник: http://mamsy.ru/blog/pravilo-zolotogo-secheniya-v-dizajne/

История

Особую красоту деления отрезка на стороны в соотношении 1/1,618 заметили еще античные ученые. Евклид в своих началах использовал этот метод при построении пентагона, а пифогорейцы рассматривали весь мир как царство математической гармонии и уделяли большое внимание соотношению 1/1,618. В 1202 году Леонардо Фибоначчи вывел особую последовательность, отношение членов которой стремилось к числу Фибоначчи. Лука Пачоли, один из величайших алгебраистов Италии, назвал это соотношение божественной пропорцией, связав свойства бога с числом Фи. Именно с этого момента золотое сечение начало активно использоваться в работах художников эпохи Возрождения и получило буквально мистический статус. По словам Кеплера, число Фи — бесценная жемчужина математики.

Источник: http://bbf.ru/calculators/83/

Люди чаще всего ориентируются на форму предмета для того, чтобы распознавать его среди миллионов других. Именно по форме мы определяем, что за вещь лежит перед нами или стоит вдали. Мы в первую очередь узнаем людей по форме тела и лица. Поэтому с уверенностью можем утверждать, что сама форма, ее размеры и вид – одна из самых важных вещей в восприятии человека.

Для людей форма чего бы то ни было представляет интерес по двум главным причинам: либо это диктуется жизненной необходимостью, либо же вызывается эстетическим наслаждением от красоты. Самое лучшее зрительное восприятие и ощущение гармонии и красоты чаще всего приходит, когда человек наблюдает форму, в построении которой использовались симметрия и особое соотношение, которое и называется золотым сечением.

Источник: http://fb.ru/article/243562/zolotoe-sechenie-eto-zolotoe-sechenie-piramidyi-formula-zolotogo-secheniya

Как построить прямоугольник с идеальными пропорциями

Чтобы применять на практике полученную информацию, надо каким-то образом научиться делить пространство или строить его согласно этому закону. Для начала давайте научимся строить прямоугольник с идеальными пропорциями. За основу берем квадрат.

Построение прямоугольника с золотым сечением

Квадрат делим пополам, в одном из полученных прямоугольников проводим линию, которая соединяет противоположные углы. Дальше берем циркуль, ставим иголку в центр нижней стороны квадрата, откладываем длину полученной диагонали и отмечаем ее на линии, которая будет продолжением нижней стороны квадрата. Полученный прямоугольник имеет соотношение сторон 1,62 (это как раз то соотношение, которое и дает 62% и 38%).

Это явно неспроста. Хотя далеко не все подчиняется этой закономерности

Что еще интересно, что если вы начнете делить прямоугольник с соотношением сторон 1,62 на квадрат и прямоугольник, вы получите снова прямоугольник с идеальными пропорциями, но меньшего размера. Если вы его снова разделите по тому же принципу, будет еще одна пара квадрат+прямоугольник со сторонами, соотношение которых будет соответствовать золотому сечению. И так до тех пор, пока вы сможете проводить деление. Но что еще интереснее, в это деление отлично вписывается ряд Фибоначчи, который имеет вид раскручивающейся спирали. Иллюстрация на рисунке выше.

Источник: http://stroychik.ru/raznoe/zolotoe-sechenie

Как разделить отрезок по правилу золотого сечения

Это умение пригодится, например, при создании проекта дома, планировки, при разработке дизайна квартиры, расстановке мебели и т.д. Точно также может понадобиться при планировке участка, клумб, высадке растений и т.д. В общем, применяться может практически везде.

Ничего особенного, но взгляд не оторвать. Знаете почему?

Итак, порядок деления отрезка по правилу золотого сечения:

  • Берем отрезок, делим его пополам.
  • Из одного из концов восстанавливаем перпендикуляр (прямая под углом 90°), который длиной равен половине отрезка. На рисунке это отрезок BC.
  • Полученную точку C соединяем прямой с другим концом отрезка (A).
  • На отрезке AC ставим точку D. Она находится на расстоянии, равном длине отрезка . Проще всего это сделать при помощи циркуля, но можно и линейкой.
  • Замеряем длину отрезка AD (снова циркулем, либо линейкой). Такую же длину откладываем на отрезке AB. Получаем точку E.
  • Теперь, если измерить длины отрезков AE и EB и разделить их, получим то самое заветное число — 1,62.

Деление отрезка на участки с идеальным соотношением

Пару раз повторив процедуру, вы научитесь делать все буквально за считанные минуты. Если же вам надо, например, определить высоту окна, его форму, также можно воспользоваться данными пропорциями. По тому же принципу можно определять местоположение всех архитектурных элементов, их размеры. При планировании уже имеющихся объектов, деление проще проводить при помощи процентного соотношения. Тут уже либо считаете в уме, либо используете калькулятор.

Источник: http://stroychik.ru/raznoe/zolotoe-sechenie

Пропорции золотого сечения в материальном мире

В 1509 году Лука Пачоли написал книгу, которая называет число Ф «Божественной пропорцией», что было наглядно показано Леонардо да Винчи. Позже да Винчи назвал эту пропорцию золотым сечением. Оно использовалось для достижения баланса и красоты во многих картинах и скульптурах эпохи Возрождения.

Да Винчи сам использовал золотое сечение, чтобы определить все пропорции в «Тайной вечере», включая размеры стола, пропорции стен и деталей интерьера. Золотое сечение также появляется в «Витрувианском Человеке» да Винчи и «Мона Лизе». Считается, что золотое сечение использовали и другие великие художники, включая Микеланджело, Рафаэля, Рембрандта, Сьюрата и Сальвадора Дали.

Термин «фи» был придуман американским математиком Марком Барром в 1900-х годах. Ф продолжал применяться в математике и физике, в том числе в плитках Пенроуза 1970-х годов, которые позволяли мозаичным поверхностям иметь пятикратную симметрию. В 1980-х годах Ф появился в квазикристаллах – недавно открывшейся форме материи.

Фи — более чем загадочный и неясный термин в математике и физике. Он появляется вокруг нас в нашей повседневной жизни, даже в наших эстетических взглядах. Исследования показали, что когда испытуемые видят случайные лица, они считают наиболее привлекательными те, которые имеют четкие параллели с золотым сечением. Лица, оцененные как наиболее привлекательные, показывают золотые соотношения между шириной лица и шириной глаз, носа и бровей. Испытуемые не были математиками или физиками, знакомыми с правилом золотого сечения (они были просто среднестатистическими людьми), и оно вызвало инстинктивную реакцию.

Золотое сечение также проявляется во всех видах природы и науки. Ниже приведены примеры самых неожиданных мест, в которых можно его встретить.

  • Цветочные лепестки. Количество лепестков на некоторых цветах соответствует последовательности Фибоначчи. С точки зрения теории Дарвина считается, что каждый лепесток помещается таким образом, чтобы обеспечить максимально возможное воздействие солнечного света и других факторов.
  • Семенные головки. Семена цветка часто начинают произрастать в центре семенной головки и мигрируют наружу, заполняя свободное пространство. Например, семечки подсолнухов следуют этой схеме.
  • Сосновые шишки. Семенные коробочки сосновых шишек наполнены семенами, которые растут спирально вверх, в противоположных направлениях. Количество шагов, которые делают спирали, как правило, соответствует числам Фибоначчи.
  • Ветви дерева. То, как ветки дерева формируются или расщепляются, является примером последовательности Фибоначчи. Корневые системы и водоросли также придерживаются такого способа формирования.
  • Раковины. Многие раковины, в том числе раковины улитки и раковины наутилуса, являются прекрасными примерами золотой спирали.
  • Спиральные галактики. Млечный путь имеет несколько спиральных рукавов, каждый из которых имеет логарифмическую спираль примерно 12 градусов. Форма спирали идентична золотой спирали, а золотой прямоугольник можно нарисовать над любой спиральной галактикой.
  • Ураганы. Внутреннее строение ураганов часто следует правилу золотой спирали.
  • Пальцы руки человека. Каждый участок пальца от кончика основания до запястья больше, чем предыдущий, примерно на соотношение Ф.
  • Тела человека и животных. Расстояние от пупка человека до пола и от макушки головы до пупка – это золотое сечение. Но человек не единственный пример золотого сечения в животном мире. Дельфины, морские звезды, морские ежи, муравьи и пчелы также демонстрируют эту пропорцию.
  • Молекулы ДНК. Молекула ДНК имеет размеры 34 ангстрем на 21 ангстрем на каждом полном цикле спирали в виде сдвоенной спирали. В рядах Фибоначчи 34 и 21 являются последовательными числами.

Таким образом, примеров, где встречаются пропорции и соотношения, следующие правилу золотого сечения, более чем достаточно. Кроме перечисленных примеров, число «Фи» часто встречается в математике, физике, астрономии, биологии и иных сферах деятельности человека. Можно смело утверждать, что название «Божественное сечение» по праву присвоено числу Ф – видимо им руководствовался создатель, наполняя эту Вселенную всем живым и неживым.

Источник: http://4brain.ru/blog/golden-ratio/

Применение в строительстве

Как уже говорили, неизвестно кто открыл золотое сечение, но все, что кажется нам красивым, имеет именно такое соотношение сторон. Примеров в природе очень много. Если рассматривать известные здания, то и там тоже есть та же закономерность.

Исаакиевский собор — можете посчитать ради интереса

Если вы хотите, чтобы ваш дом внутри и снаружи был привлекательным, запоминался и нравился, при создании или выборе проекта можно просчитать хотя бы основные пропорции. Внести корректировки в пропорции, возможно, не всегда легко, часто связано с дополнительными расходами. Но, если при создании проекта сразу держать в уме золотое сечение, вопросы сами по себе отпадают. На самом деле не так уж это сложно.

Например, вы хотите дом площадью около 100 квадратных метров. Длинную сторону можно принять за 12 метров. Тогда короткая находится как 62% от длинной и составит 7,44 метра. Можно сделать 7 метров или 7,5, можно увеличить до 8. Точное, до сантиметра соблюдение размеров совсем не обязательно. Важно соотношение. А «на глаз» даже в приближении смотрится гармонично. Площадь застройки в таком случае получается несколько меньше — 90-96 квадратов. Если вам надо больше — берите длинную сторону равной 13 метрам и снова считайте. Вроде как применять золотое сечение при создании плана дома понятно.

Если основные параметры строения имеют правильную пропорцию, в любом стиле здание смотрится интересно

Высота этажа в таком случае принимается как 32% от длинной части. Она составит 12*0,32 = 3,84 метра. В принципе, это соответствует нынешним представлениям о комфортных габаритах помещения, но при желании можно сделать высоту меньше. Примерно также рассчитываются, подбираются все остальные фрагменты дома.

Не стоит забывать, что дом должен вписываться также в ландшафт. Если есть какая-то доминанта — высокий холм, например, то просчитывать надо и соотношение с холмом, и с пропорциями участка. В общем, для создания гармоничной усадьбы очень многие факторы надо учитывать.

Не только прямые линии можно использовать. Правда с изогнутыми поверхностями работать сложнее, да и обходятся они дороже — нестандартное устройство всегда более затратное

По такому же принципу разрабатывают внутреннюю планировку, стараясь по возможности соблюдать требуемое соотношение. Но еще раз повторим: по возможности. Не зацикливайтесь на точном соответствии до сантиметра. Важна общая тенденция.

Источник: http://stroychik.ru/raznoe/zolotoe-sechenie

Золотое сечение в архитектуре

Многие из построек, сохранившихся до сегодняшних дней, свидетельствуют, что архитекторы средневековья знали о существовании золотого сечения, и, конечно, при строительстве дома руководствовались своими примитивными расчетами и зависимостями, с помощью которых пытались добиться максимальной прочности. Особенно проявлялось желание строить максимально красивые и гармоничные дома в постройках резиденций царствующих особ, церквей, ратуш и зданий, имеющих особое социальное значение в обществе.

Например, знаменитый собор Парижской богоматери в своих пропорциях имеет немало участков и размерных цепей, соответствующих золотому сечению.

Еще до публикации своих исследований в 1855 году профессором Цейзингом, в конце XVIII века были построены знаменитые архитектурные комплексы Голицынской больницы и здания сената в Санкт-Петербурге, дома Пашкова и Петровского дворца в Москве с использованием пропорций золотого сечения.

Разумеется, дома с точным соблюдением правила золотого сечения строили и ранее. Стоит упомянуть памятник древней архитектуры церкви Покрова на Нерли, изображенный на схеме.

Всех их объединяет не только гармоничное сочетание форм и высокое качество строительства, но и, в первую очередь, наличие золотого сечения в пропорциях здания. Удивительная красота постройки становится еще более загадочной, если принять во внимание возраст, здание церкви Покрова датируется XIII веком, но современный архитектурный облик постройка получила на рубеже XVII века в результате реставрации и перестройки.

Источник: http://bouw.ru/article/zolotoe-sechenie-proportsiya

Калькулятор золотого сечения

Если вы хотите использовать божественную пропорцию в своей работе, то наш калькулятор к вашим услугам. Для определения сторон золотого прямоугольника вам понадобится ввести одну из сторон, а программа определит вторую, соответствующую правилу золотого сечения. Прелесть калькулятора состоит в том, что он не просто умножает сторону на 1,618, а подбирает целое значение. Именно поэтому вам потребуется оперировать целыми числами, что удобно на практике.

Источник: http://bbf.ru/calculators/83/

Ряд Фибоначчи

С историей золотого сечения косвенным образом связано имя итальянского математика монаха Леонардо из Пизы, более известного под именем Фибоначчи (сын Боначчи). Он много путешествовал по Востоку, познакомил Европу с индийскими (арабскими) цифрами. В 1202 г вышел в свет его математический труд «Книга об абаке» (счетной доске), в котором были собраны все известные на то время задачи. Одна из задач гласила «Сколько пар кроликов в один год от одной пары родится». Размышляя на эту тему, Фибоначчи выстроил такой ряд цифр:

Месяцы0123456789101112и т.д.
Пары кроликов01123581321345589144и т.д.

Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21 : 34 = 0,617, а 34 : 55 = 0,618. Это отношение обозначается символом Ф. Только это отношение – 0,618 : 0,382 – дает непрерывное деление отрезка прямой в золотой пропорции, увеличение его или уменьшение до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему.

Фибоначчи так же занимался решением практических нужд торговли: с помощью какого наименьшего количества гирь можно взвесить товар? Фибоначчи доказывает, что оптимальной является такая система гирь: 1, 2, 4, 8, 16…

Источник: http://masterok.livejournal.com/853629.html

См. также

  • Пифагорейский пентакл
  • Логарифмическая спираль
  • Фибоначчиева система счисления
  • Правило третей
  • Метод золотого сечения

Источник: http://dic.academic.ru/dic.nsf/ruwiki/930228

Золотые котики Фибоначчи

Ну и, наконец, о котиках! Вы задумывались о том, почему все так любят котеек? Они же ведь заполонили Интернет! Котики везде и это чудесно =)

А все дело в том, что кошки — идеальны! Не верите? Сейчас докажу вам это математически!

Видите? Тайна раскрыта! Котейки идеальны с точки зрения математики, природы и Вселенной =)

* Я шучу, конечно. Нет, кошки, действительно, идеальны) Но математически их никто не измерял, наверное.

На этом, в общем-то, все, друзья! Мы увидимся в следующих статьях. Удачи вам!

P. S. Изображения взяты с сайта medium.com.

Источник: http://pearative.ru/stati/chto-takoe-zolotoe-sechenie/

Источники

  1. Радзюкевич А.В. Красивая сказка о «золотом сечении»
  2. Золотой запас зодчества

Источник: http://dic.academic.ru/dic.nsf/ruwiki/930228

О построении золотого сечения

На самом деле, построение золотого сечения – дело нехитрое. Как мы видим, еще древние люди справлялись с этим довольно легко. Что уже говорить о современных знаниях и технологиях человечества. В этой статье мы не будем показывать, как подобное можно сделать просто на листке бумаги и с карандашом в руках, но с уверенностью заявим, что это, на самом деле, возможно. Более того, сделать это можно далеко не одним способом.

Так как это достаточно несложная геометрия, золотое сечение является довольно простым для построения даже в школе. Поэтому информацию об этом можно легко найти в специализированных книгах. Изучая золотое сечение 6 класс полностью способен понять принципы его построения, а значит, даже дети достаточно умны для того, чтобы осилить подобную задачу.

Источник: http://fb.ru/article/243562/zolotoe-sechenie-eto-zolotoe-sechenie-piramidyi-formula-zolotogo-secheniya

Золотое сечение в архитектуре: принцип проектирования зданий

Почему нас так привлекают строения древней архитектуры, при виде которых мы испытываем гармонию и умиротворение? Все они были построены на основе золотого сечения, данная зависимость прослеживается и в средневековье, и в современном мире. Математическая пропорция встречается повсеместно: это и ракушки моллюсков, и знаменитые картины художников, и строение человеческого тела, и даже египетские пирамиды. Сегодня об обзоре редакции Homius.ru расскажем простыми словами, как и, самое главное, зачем нужно использовать божественную гармонию чисел, и как она поможет в строительстве собственного дома и оформлении интерьера.

Винтовая лестница построена по принципу золотого сечения

Содержание статьи

Просто о сложном: что это такое – правило золотого сечения

Золотое сечение –это правило общей пропорции, которая создает универсальную композицию. Математики называют её формулой божественной гармонии или асимметричной симметрией.

Это интересно! Общее определение правила ЗС –меньшая величина относится к большей, как большая к целому. Было рассчитано приблизительное число, равное 1,6180339887, это и есть коэффициент золотого сечения. Если смотреть в процентном соотношении, то в одном целом меньшая величина занимает 38%, большая – 62%.

Признано считать, что ЗС пришло к нам еще с древней Греции, но есть и такое мнение, что его греки подсмотрели у египтян. Если проанализировать архитектуру Египта того времени, можно чётко проследить соблюдение математической гармонии. Необычные свойства числовой зависимости стали причиной мистического отношения к золотому сечению:

  • практически все живые организмы можно привести к принципу числовой зависимости. Например, тело человека, количество семечек в подсолнухе, структуру ДНК, произведения искусства и вирусную бактерию;
  • данная зависимость чисел характерна только для биологических существ и кристаллов, все остальные неживые объекты природы крайне редко обладают золотой пропорцией;
  • именно математическая пропорция в строении биологических объектов оказалась оптимальной для выживания.
Идеальный пример ЗС в природе — раковина морского моллюска

Экскурс в историю: кто придумал золотое сечение

Представление о золотой пропорции имели и древние греки, и египтяне, известно было о ней и на Руси. Но впервые ещё в 1509 году в книге «Божественная Пропорция», иллюстрации к которой принадлежат Леонардо да Винчи, монах Лука Пачоли дал научное определение правилу. Он видел в золотом сечении божественное единство:

  • маленький отрезок – это сын;
  • большой – отец;
  • весь отрезок – это святой дух.

Это интересно! Историки присваивают Леонардо да Винчи определение термина ЗС, поскольку он долгое время изучал божественную закономерность и воплощал её принцип в своих творениях.

Вторую жизнь ЗС получило в 1855 году благодаря философу Адольфу Цейзингу. Он доработал теорию до абсолютного идеала, и она стала универсальной для всех проявлений. Все это он описал в своей книге «Математическое Эстетство», на которое в свое время обрушилось много негатива и критики.

Золотое сечение в божественной пропорции

Принцип расчета и построения золотого сечения

Примеры пропорции золотого сечения можно видеть при строительстве многих архитектурных сооружений, только нужно знать, как правильно его увидеть. Для этого достаточно посмотреть на строение всего 5 минут.

Как определить число золотого сечения

С пропорцией ЗС связывают астронома из Италии Фибоначчи, он вывел ряд чисел, в котором значение каждого последующего равно сумме двух предыдущих. Сегодня эта закономерность известна как ряд Фибоначчи:

  • 0, 1,1 (0+1), 2 (1+1), 3 (1+2), 5 (2+3), 8 (3+5), 13 (5+8), 21 (8+13), 34 (13+21), 55 (21+34), 89 (34+55) и так до бесконечности;
  • если выполнить деление последующего числа на предыдущее – получится коэффициент ЗС.

Данную формулу применяют для расчета пропорций золотого сечения в любой отрасли, на практике чаще всего используют округленные значения 0,62 и 0,38.

Ряд Фибоначчи в церкви Покрова на Нерли

Как рассчитать золотое сечение на простейшем примере

Проще всего объяснить гармонию ЗС можно на примере обычного куриного яйца, точнее на удалении всех точек скорлупы от центра тяжести. Именно форма оболочки, а не её прочность, обеспечила выживаемость птиц столь долгое время и в любых условиях.

Если взять обычный отрезок, который состоит из нескольких маленьких, их длины относятся к большей величине как 0,62. Это показывает, как можно разбить целую линию для получения идеальной пропорции.

Простой пример золотого сечения в курином яйце

Как построить золотое сечение на примере прямоугольника и спирали

Если построить золотой прямоугольник, используя ряд Фибоначчи, он будет выглядеть как единое целое. Рассмотрим зависимость на примере:

  • нужно нарисовать квадрат со стороной 1 и рядом ещё один аналогичный;
  • над ними разместить квадрат со стороной 2;
  • слева гармонично помещается квадрат с гранью 3;
  • ниже – квадрат со стороной 5;
  • справа пространство займет квадрат с гранью 8;
  • площадь прямоугольника 8×13, в котором 13 — это следующее число ряда;
  • если разделить на калькуляторе следующее число на предыдущее, получится значение золотого сечения 1,62, причём, чем больше числа, тем меньшая погрешность в их отношении;
  • если по этому принципу построить спираль, каждую четверть витка она будет расширяться именно на значение ЗС.
Принцип золотого сечения в прямоугольникеПостроение золотой спирали из прямоугольника

На видео можно более подробно узнать про магию чисел Фибоначчи:

Божественная гармония золотого сечения в архитектуре: фото древних построек и примеры современного строительства

Многие древние здания, которые сохранились до наших времен, подтверждают мнение, что они были построены по правилам идеальной пропорции. Это резиденции королей, церкви, общественные сооружения. Рассмотрим на примерах принцип золотого сечения в разных странах.

Тайны древнеегипетской архитектуры

В архитектуре Древнего Египта по правилам золотой пропорции была построена пирамида Хеопса. Глядя на творение строителей, можно увидеть треугольник с прямым углом, один катет которого является высотой, второй – половиной длины основания. Если взять отношение гипотенузы к меньшей стороне, получим идеальное значение 1,61950 или 1,62.

Это интересно! Форма пирамиды имеет ещё одно неоспоримое свойство. В нём сталь становится прочнее, вода дольше сохраняет свежий вкус, и быстрее растут живые растения. Много лет ученые пытаются разгадать этот феномен, но пока его научное решение не найдено.

Было замечено, что пирамида улучшает психоэмоциональное состояние человека, в её области уменьшаются вредоносные излучения, пропадают геопатогенные зоны.

Идеальная пропорция золотого сечения в пирамиде

Идеальные пропорции в древней Греции

Идеальная пропорциональность делает архитектурные объекты запоминающимися. Яркий представитель ЗС из древней Греции – Парфенон, который возведен в 5 веке до нашей эры. Если взять отношение его высоты к ширине, получится практически идеальное число 0,618.

Ученые определили, что для абсолютного золотого числа нужно отнять от высоты 14 см и прибавить их к ширине. Учитывая строение сооружения, очень похоже, что это было сделано древними архитекторами Иктином и Калликратом намеренно, поскольку фасад немного сужается в верхней части и отклоняется от золотого прямоугольника. Но общие пропорции ЗС соблюдены.

Принцип идеальной пропорции в древнегреческом Парфеноне:

Памятники архитектуры средневековья

Прекрасным памятником истории архитектуры средневековья, сохранившимся до нашего времени, является собор Парижской Богоматери или Нотр-Дам де Пари.

В здании очень заметно желание архитектора соблюсти гармонию и целостностьАнализируя строение, принцип ЗС можно видеть на нескольких участках

Архитектура России

Ряд Фибоначчи – это своеобразная матрица, с помощью которой анализируют любое архитектурное сооружение. Чтобы было проще ориентироваться, можно построить на принципе золотого сечения циркуль Фибоначчи.

Разметчик Фибоначчи построен по правилу золотого сеченияИспользовать циркуль можно практически на любом архитектурном сооруженииЧтобы исследовать большие объекты, нужно отойти на некоторое расстояние и приложить циркуль
Золотое сечение в архитектуре Москвы

Выдающееся здание МГУ на Воробьевых горах было построено в послевоенное время. В те годы это было самое высокое строение, состоящее из пяти композиционных групп, которые венчает центральная башня. Здесь чётко прослеживается треугольник с прямым углом, гипотенуза которого захватывает пристройки и проходит через угол здания.

В МГУ золотому сечению подчиняются высоты

Золотые пропорции прослеживаются и в работах русского зодчего Матвея Казакова.

Кремлевское здание сенатаПречистенский дворецГолицынская больницаДом союзов — благородное собрание

Использовал это прием и архитектор Василий Баженов, его здания причислены к историческим памятникам

Дом Пашкова
Архитектура в Санкт-Петербурге

Живым примером золотого сечения является Исаакиевский собор.

ЗС в Исаакиевском соборе

В первую очередь можно проанализировать его ширину, равную 400 единицам:

  • при делении числа 400 на значение золотого сечения получим приблизительно 248;
  • при дальнейшем делении 248/1,618=153;
  • основная часть собора вписывается в золотой прямоугольник, длинная сторона которого равна 400, ширина – 248.

По высоте здания ЗС можно видеть у купола, благодаря этому внешнее восприятие памятника архитектуры становится гармоничным.

На фото чётко прослеживаются золотой треугольник и прямоугольник в Исаакиевском соборе

Приведем ещё несколько примеров золотого сечения в архитектуре Санкт-Петербурга.

Кунсткамера

Кунсткамера была построена ещё в 1718 году, руководил строительством немецкий архитектор Георг Маттарнови. Она представляет собой 2 корпуса по 3 этажа, между ними возведена куполообразная многоярусная конструкция в виде башни.Золотое сечение в соотношении сторон можно наблюдать в длине корпусов и в высотах разных уровней.

В башне по всей высоте четко прослеживается равнобедренный треугольник, а это значит, что Кунсткамера построена по общему принципу ЗС

Торговый дом Эсдерс и Схейфальс

ЗС в здании, возведенном в 1907 году, наблюдается в следующих размерах:

  • 671, 414, 256, 98, 60, 37 и 23.

Композиция смотрится гармонично благодаря золотому соблюдению высотных величин.

Основной элемент здания — шпиль

Дом Советов

Дом Советов был возведен по проекту Троцкого в 1941 году, основной акцент выполняют портик по центру с 14 колоннами и скульптурный ансамбль. По обе стороны расположены два корпуса высотой в 5 этажей. Длина здания – 1472 единицы, если разделить его на значение Ф = 1,618, получим размерный ряд:

  • 1472, 909, 562, 347, 214, 132, 81, 50. К ним относятся высота входа, всего сооружения, различных элементов.
Анализ длин и высот Дома Советов

Золотой прямоугольный треугольник идеально вписывается в центр здания, его вершина совпадает с вершиной Дома Советов, а гипотенуза заканчивается в конце бокового крыла. Если построить равнобедренный золотой треугольник, его грани будут проходить через точки в верхней части основного входа.

Очевидная пропорциональность Дома Советов

Примеры золотого сечения в современной архитектуре

В современной архитектуре формула расчёта золотого сечения позволяет проектировать уникальные формы, которые несут прочность, спокойствие и красоту.

Правило золотого сечения при строительстве частного дома

Многие архитекторы, которые разрабатывают проекты частных домов, используют правило золотого сечения. У клиентов создается ощущение, что все детали проработаны для максимально комфортного проживания. При грамотном выборе площадей жильцы на психологическом уровне ощущают умиротворение и успокоение.

Что нужно знать при проектировании фасада

В современном строительстве при проектировании домов кроме ряда Фибоначчи используют ещё один метод, основоположником которого был архитектор из Франции Ле Корбюзье. Он принимал за основу рост будущих владельцев усадьбы и, исходя их этого, рассчитывал параметры строения и комнат. Благодаря такому подходу дом получался не только гармоничный, но и максимально комфортный с индивидуальными чертами хозяев.

Идеальные пропорции частного дома

Золотое сечение в оформлении интерьера

Даже если дом возведен по типовому проекту, можно внутри его создать интерьер, максимально приближенный к идеальной пропорции 1:1,62. Например, благодаря дополнительным перегородкам или расположению мебельных групп, а также можно изменить дверные или оконные проемы, чтобы соотношение ширины к высоте было в золотом сечении.

Аналогичная ситуация и с цветовым оформлением интерьера, здесь действует упрощенное правило:

  • 60% — основная палитра;
  • 30% — дополнительный оттенок;
  • 10% — близкий тон, который усиливает восприятие основного и дополнительного.

Правило 1/1,62 в интерьере должно сопровождаться во всем: в соотношении мебели к общей площади, в ее высоте по отношению к параметрам комнаты.

Заключение

Принцип золотого сечения не является новым в архитектуре, поскольку в прежние времена здания строились не по типовым проектам, а с учетом индивидуальных особенностей будущих владельцев. Такие строения выглядят даже спустя многие года гармоничными и привлекательными. Интерьер, оформленный по правилам идеальной пропорции, позволяет грамотно использовать все площади.

Теперь вы сможете самостоятельно и правильно применить божественную гармонию математических цифр, планируя строительство дома или оформляя свой интерьер. Более того, интересную комбинацию цифр можно использовать и в экономике, и в расчете инвестиций и во всех деталях, с которыми соприкасается человек ежедневно.

Если у вас ещё остались вопросы, предлагаем посмотреть видео, в котором простыми словами разъяснен принцип действия золотого сечения:

 

Предыдущая

Новинки рынкаОт теории к практике: самостоятельная регулировка окон к зиме

Следующая

Новинки рынкаБалкон и лоджия: в чём разница, о каких нюансах стоит знать, если вы решились на переделку?

Понравилась статья? Сохраните, чтобы не потерять!

ТОЖЕ ИНТЕРЕСНО:

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

Золотое сечение

Любому человеку, которому хотя бы косвенно приходилось сталкиваться с геометрией пространственных объектов в интерьерном дизайне и архитектуре, наверняка хорошо известен принцип золотого сечения. Еще недавно, несколько десятков лет назад, популярность золотого сечения была настолько высокой, что многочисленные сторонники мистических теорий и устройства мира его называют универсальным гармоническим правилом.

Сущность универсальной пропорции

Удивительно другое. Причиной предвзятого, почти мистического отношения к столь простой числовой зависимости послужило несколько необычных свойств:

  • Большое количество объектов живого мира, от вируса до человека, имеют основные пропорции тела или конечностей, очень близкие к значению золотого сечения;
  • Зависимость 0,63 или 1,62 характерна только для биологических существ и некоторых разновидностей кристаллов, неживые объекты, от минералов до элементов ландшафта, обладают геометрией золотого сечения крайне редко;
  • Золотые пропорции в строении тела оказались наиболее оптимальными для выживания реальных биологических объектов.

Сегодня золотое сечение находят в строении тела животных, панцирей и раковин моллюсков, пропорций листьев, веток, стволов и корневых систем у достаточно большого числа кустарников и трав.

Многими последователями теории универсальности золотого сечения неоднократно предпринимались попытки доказать тот факт, что его пропорции являются наиболее оптимальными для биологических организмов в условиях их существования.

Обычно в качестве примера приводится устройство раковины Astreae Heliotropium, одного из морских моллюсков. Панцирь представляет собой свернутую спиралью кальцитовую оболочку с геометрией, практически совпадающей с пропорциями золотого сечения.

Более понятным и очевидным примером является обычное куриное яйцо.

Соотношение основных параметров, а именно, большого и малого фокуса, или расстояний от равноудаленных точек поверхности до центра тяжести, будет также соответствовать золотому сечению. При этом форма скорлупы птичьего яйца является наиболее оптимальной для выживания птицы, как биологического вида. При этом прочность скорлупы играет далеко не главную роль.

Происхождение универсальной пропорции

О золотой пропорции сечения знали древнегреческие математики Евклид и Пифагор. В одном из памятников древней архитектуры — пирамиде Хеопса соотношение сторон и основания, отдельные элементы и настенные барельефы выполнены в соответствии с универсальной пропорцией.

Методика золотого сечения широко использовалась в средние века художниками и архитекторами, при этом суть универсальной пропорции считалась одной из тайн вселенной и тщательно скрывалась от простого обывателя. Композиция многих картин, скульптур и зданий выстраивалась строго в соответствии с пропорциями золотого сечения.

Впервые суть универсальной пропорции документально была сформулирована в 1509 г монахом-францисканцем Лукой Пачоли, обладавшим блестящими математическими способностями. Но настоящее признание состоялось после проведения немецким ученым Цейзингом всестороннего изучения пропорций и геометрии человеческого тела, древних скульптур, произведений искусства, животных и растений.

У большинства живых объектов некоторые размеры тела подчиняются одним и тем же пропорциям. В 1855 г ученым был сделан вывод о том, что пропорции золотого сечения являются своеобразным стандартом гармонии тела и формы. Речь идет, прежде всего, о живых существах, для мертвой природы золотое сечение встречается значительно реже.

Как получили золотое сечение

Пропорцию золотого сечения проще всего представить, как отношение двух частей одного объекта разной длины, разделенных точкой.

Проще говоря, сколько длин маленького отрезка поместится внутри большого, или отношение самой большей из частей ко всей длине линейного объекта. В первом случае соотношение золотого сечения составляет 0,63, во втором варианте соотношение сторон равняется 1,618034.

На практике золотое сечение представляет собой всего лишь пропорцию, соотношение отрезков определенной длины, сторон прямоугольника или других геометрических форм, родственных или сопряженных размерных характеристик реальных объектов.

Первоначально золотые пропорции были выведены эмпирическим путем с помощью геометрических построений. Существует несколько способов построения или выведения гармонической пропорции:

  • Классическим разбиением одной из сторон прямоугольного треугольника и построением перпендикуляров и секущих дуг. Для этого из одного конца отрезка необходимо восстановить перпендикуляр высотой в ½ его длины и построить прямоугольный треугольник, как на схеме.

    Если на гипотенузе отложить высоту перпендикуляра, то радиусом, равным оставшемуся отрезку, основание рассекается на два отрезка с длинами, пропорциональными золотому сечению;
  • Методом построения пентаграммы Дюрера, гениального немецкого графика и геометра. Сегодня мы знаем метод золотого сечения Дюрера, как способ построения звезды или пентаграммы, вписанной в окружность, в которой как минимум четыре отрезка гармоничной пропорции;
  • В архитектуре и строительстве золотое сечение чаще используется в усовершенствованном виде. В этом случае используется разбиение прямоугольного треугольника не по катету, а по гипотенузе, как схеме.

Если стандартный вариант золотого сечения для живых существ, живописи, графики, скульптур и античных построек рассчитывался, как 37:63, то золотое сечение в архитектуре с конца XVII века все чаще стало использоваться 44:56. Большинство специалистов считают изменение в пользу более «квадратных» пропорций распространением высотного строительства.

Главный секрет золотого сечения

Если природные проявления универсального сечения в пропорциях тел животных и человека, стеблевой основы растений еще можно объяснить эволюцией и приспосабливаемостью к влиянию внешней среды, то открытие золотого сечения в строительстве домов XII-XIX века стало определенной неожиданностью. Мало того, знаменитый древнегреческий Парфенон был построен с соблюдением универсальной пропорции, многие дома и замки состоятельных вельмож и зажиточных людей в средние века строились сознательно с параметрами, очень близкими к золотому сечению.

Золотое сечение в архитектуре

Многие из построек, сохранившихся до сегодняшних дней, свидетельствуют, что архитекторы средневековья знали о существовании золотого сечения, и, конечно, при строительстве дома руководствовались своими примитивными расчетами и зависимостями, с помощью которых пытались добиться максимальной прочности. Особенно проявлялось желание строить максимально красивые и гармоничные дома в постройках резиденций царствующих особ, церквей, ратуш и зданий, имеющих особое социальное значение в обществе.

Например, знаменитый собор Парижской богоматери в своих пропорциях имеет немало участков и размерных цепей, соответствующих золотому сечению.

Еще до публикации своих исследований в 1855 году профессором Цейзингом, в конце XVIII века были построены знаменитые архитектурные комплексы Голицынской больницы и здания сената в Санкт-Петербурге, дома Пашкова и Петровского дворца в Москве с использованием пропорций золотого сечения.

Разумеется, дома с точным соблюдением правила золотого сечения строили и ранее. Стоит упомянуть памятник древней архитектуры церкви Покрова на Нерли, изображенный на схеме.

Всех их объединяет не только гармоничное сочетание форм и высокое качество строительства, но и, в первую очередь, наличие золотого сечения в пропорциях здания. Удивительная красота постройки становится еще более загадочной, если принять во внимание возраст, здание церкви Покрова датируется XIII веком, но современный архитектурный облик постройка получила на рубеже XVII века в результате реставрации и перестройки.

Особенность золотого сечения для человека

Старинная архитектура зданий и домов средневековья остается притягательной и интересной для современного человека по многим причинам:

  • Индивидуальный художественный стиль в оформлении фасадов позволяет избежать современного штампа и серости, каждое здание представляет собой произведение искусства;
  • Массовое использование для декорирования и украшения статуй, скульптур, лепнины, необычных сочетаний строительных решений разных эпох;
  • Пропорции и композиции здания притягивают взор к наиболее важным элементам постройки.

Важно! При проектировании дома и разработке внешнего вида средневековые архитекторы применяли правило золотого сечения, неосознанно используя особенности восприятия подсознания человека.

Современные психологи экспериментально доказали, что золотое сечение является проявлением неосознанного желания или реакции человека на гармоничное сочетание или пропорцию в размерах, формах и даже цветах. Был проведен эксперимент, в ходе которого группе людей, незнакомых между собой, не имеющих общих интересов, разных профессий и возрастных категорий, предложили ряд тестов, среди которых была задача согнуть лист бумаги в наиболее оптимальной пропорции сторон. По результатам тестирования было установлено, что в 85 случаях из 100 лист сгибался испытуемыми практически точно по золотому сечению.

Поэтому современная наука считает, что феномен универсальной пропорции является психологическим явлением, а не действием каких-либо метафизических сил.

Использование фактора универсального сечения в современном дизайне и архитектуре

Принципы применения золотой пропорции в последние несколько лет стали необыкновенно популярны в строительстве частных домов. На смену экологии и безопасности строительных материалов пришли гармоничность конструкции и правильное распределение энергии внутри дома.

Современная интерпретация правила всеобщей гармонии давно распространилась за пределы привычной геометрии и формы объекта. Сегодня правилу подчиняются не только размерные цепи длины портика и фронтона, отдельных элементов фасада и высоты здания, но и площадь комнат, оконных и дверных проемов, и даже цветовая гамма внутреннего интерьера помещения.

Проще всего построить гармоничный дом на модульной основе. В этом случае большинство отделений и комнат изготавливаются в виде самостоятельных блоков или модулей, спроектированных с соблюдением правила золотого сечения. Построить здание в виде набора гармоничных модулей значительно проще, чем строить одну коробку, в которой большая часть фасада и внутренних помещений должна быть в жестких рамках пропорций золотого сечения.

Немало строительных фирм, выполняющих проектирование частных домовладений, используют принципы и понятия золотого сечения для увеличения сметы и создания у клиентов впечатления глубокой проработки конструкции дома. Как правило, такой дом декларируется, как очень удобный и гармоничный в пользовании. Правильно подобранное соотношение площадей комнат гарантирует душевный комфорт и отменное здоровье хозяев.

Если дом был построен без учета оптимальных соотношений золотого сечения, можно выполнить перепланировку комнат так, чтобы пропорции помещения соответствовали соотношению стен в пропорции 1:1,61. Для этого может перемещаться мебель или устанавливаться дополнительные перегородки внутри комнат. Аналогичным образом меняются размеры оконных и дверных проемов так, чтобы ширина проема была меньше высоты дверного полотна в 1,61 раза. Таким же способом выполняется планирование мебели, бытовой техники, отделки стен и пола.

Сложнее выбрать цветовое оформление. В этом случае вместо привычного соотношения 63:37 последователями золотого правила принята упрощенная трактовка – 2/3. То есть основной цветовой фон должен занимать 60% пространства помещения, оттеняющему цвету отдают не более 30%, и остальное отводится под различные родственные тона, призванные усилить восприятие цветового решения.

Внутренние стены помещения делятся горизонтальным поясом или бордюром на высоте 70 см, установленная мебель должна соизмеряться с высотой потолков по соотношению золотого сечения. То же правило касается распределения длин, например, размер дивана не должен превышать 2/3 длины простенка, а общая площадь, занимаемая мебелью, относится к площади комнаты, как 1:1,61.

Золотую пропорцию сложно в массовом порядке применять на практике из-за всего лишь одного значения сечения, поэтому при проектировании гармоничных зданий нередко прибегают к ряду чисел Фибоначчи. Это позволяет расширить количество возможных вариантов пропорций и геометрических форм основных элементов дома. В этом случае ряд чисел Фибоначчи, связанных между собой четкой математической зависимостью, называют гармоническим или золотым.

В современной методике проектирования жилья на основе принципа золотого сечения, кроме ряда Фибоначчи, широко используется принцип, предложенный известным французским архитектором Ле Корбюзье. В этом случае в качестве отправной единицы измерения, по которой рассчитываются все параметры здания и внутреннего интерьера, выбирается рост будущего владельца или средняя высота человека. Такой подход позволяет спроектировать дом не только гармоничный, но и по-настоящему индивидуальный.

Заключение

На практике, по отзывам тех, кто решился на строительство дома по правилу золотого сечения, качественно построенное здание действительно оказывается достаточно удобным для проживания. Но стоимость строения из-за индивидуального проектирования и применения стройматериалов нестандартных размеров возрастает на 60-70%. И в этом подходе нет ничего нового, так как большинство зданий прошлого века строилось именно под индивидуальные особенности будущих хозяев.

Золотое сечение как построить — Инженер ПТО

Наблюдения за природой и попытки раскрыть тайны ее прекрасных созданий принесли немало открытый. Одно из них — золотое сечение. Это некоторая закономерность, которой подчиняется все, что мы называем красивым. Люди, животные, цветы, здания, галактики…

Что такое золотое сечение и как его понимать

Часто мы сталкиваемся с домами, предметами, строениями, растениями, которые нас чем-то завораживают. Люди издавна пытались понять, почему одно нам кажется красивым, другое нет, искали закономерности. И вроде нашли. Это некоторое соотношение частей, которое назвали золотым сечением.

О том, кто и когда придумал золотое сечение никто не знает точно. Кто-то приписывает открытие Пифагору, но первое упоминание нашли еще в «Началах» Евклида, а жил он в 3 веке до нашей эры. Так что находка явно давняя. Именно по этому принципу построены древнегреческие и римские храмы. Конечно, это могут быть совпадения, но очень уж странные и очень их много. Так что, скорее всего, они были в курсе идеальных пропорций.

Сохранившиеся постройки древности тоже подчинены правилу золотого сечения

Совершенно точно то, что Леонардо да Винчи искал подтверждение этому принципу в строении человеческого тела. И, что самое интересное, нашел. Те лица и тела, которые кажутся нам красивыми, имеют пропорции, которые как раз и подчиняются закону золотого сечения.

Формальное определение звучит и просто, и сложно. Его связывают с двумя разными по размеру отрезками. Звучит этот принцип примерно так: если отрезок разделить на две неравные части, то это деление будет пропорциональным, если большая часть отрезка относится к целому так же, как и меньшая часть к большему. Будет понятнее, если посмотреть на иллюстрацию и формулу.

Принцип и формула золотого сечения

На рисунке целый отрезок разделен так, что если а разделить на b, получим 1,1618, та же цифра получается, если целый отрезок разделить на большую часть — a. Это число и есть воплощением идеальной пропорции. Теперь, если посмотрите на картинку с Парфеноном, пропорции этого строения также подчиняются указанному соотношению.

Ту же закономерность можно представить в виде процентов. Может, кому-то так проще. Для того, чтобы деление целого было пропорциональным, части должны составлять 62% и 38%. Возможно, так будет проще запомнить.

Последовательность Фибоначчи — не только математическая формула

Эту закономерность развил дальше математик Фибоначчи. Он разработал числовую последовательность, элементы которой, начиная с девятого, подчиняются тому же закону. Графическое изображение этой последовательности — спираль. Если присмотреться, и в природе, и в архитектуре, и в человеческом теле пропорции красоты присутствуют.

Как построить прямоугольник с идеальными пропорциями

Чтобы применять на практике полученную информацию, надо каким-то образом научиться делить пространство или строить его согласно этому закону. Для начала давайте научимся строить прямоугольник с идеальными пропорциями. За основу берем квадрат.

Построение прямоугольника с золотым сечением

Квадрат делим пополам, в одном из полученных прямоугольников проводим линию, которая соединяет противоположные углы. Дальше берем циркуль, ставим иголку в центр нижней стороны квадрата, откладываем длину полученной диагонали и отмечаем ее на линии, которая будет продолжением нижней стороны квадрата. Полученный прямоугольник имеет соотношение сторон 1,62 (это как раз то соотношение, которое и дает 62% и 38%).

Это явно неспроста. Хотя далеко не все подчиняется этой закономерности

Что еще интересно, что если вы начнете делить прямоугольник с соотношением сторон 1,62 на квадрат и прямоугольник, вы получите снова прямоугольник с идеальными пропорциями, но меньшего размера. Если вы его снова разделите по тому же принципу, будет еще одна пара квадрат+прямоугольник со сторонами, соотношение которых будет соответствовать золотому сечению. И так до тех пор, пока вы сможете проводить деление. Но что еще интереснее, в это деление отлично вписывается ряд Фибоначчи, который имеет вид раскручивающейся спирали. Иллюстрация на рисунке выше.

Как разделить отрезок по правилу золотого сечения

Это умение пригодится, например, при создании проекта дома, планировки, при разработке дизайна квартиры, расстановке мебели и т.д. Точно также может понадобиться при планировке участка, клумб, высадке растений и т.д. В общем, применяться может практически везде.

Ничего особенного, но взгляд не оторвать. Знаете почему?

Итак, порядок деления отрезка по правилу золотого сечения:

  • Берем отрезок, делим его пополам.
  • Из одного из концов восстанавливаем перпендикуляр (прямая под углом 90°), который длиной равен половине отрезка. На рисунке это отрезок BC.
  • Полученную точку C соединяем прямой с другим концом отрезка (A).
  • На отрезке AC ставим точку D. Она находится на расстоянии, равном длине отрезка . Проще всего это сделать при помощи циркуля, но можно и линейкой.
  • Замеряем длину отрезка AD (снова циркулем, либо линейкой). Такую же длину откладываем на отрезке AB. Получаем точку E.
  • Теперь, если измерить длины отрезков AE и EB и разделить их, получим то самое заветное число — 1,62.

Деление отрезка на участки с идеальным соотношением

Пару раз повторив процедуру, вы научитесь делать все буквально за считанные минуты. Если же вам надо, например, определить высоту окна, его форму, также можно воспользоваться данными пропорциями. По тому же принципу можно определять местоположение всех архитектурных элементов, их размеры. При планировании уже имеющихся объектов, деление проще проводить при помощи процентного соотношения. Тут уже либо считаете в уме, либо используете калькулятор.

Идеальный треугольник и пентаграмма

Идеальным называют равнобедренный треугольник, основание которого относится к длине стороны как 1/3. То есть, снова-таки соблюдается золотое сечение. Начертить треугольник с идеальным соотношением сторон несложно. Удобнее циркулем, но можно обойтись и линейкой.

Золотой треугольник, правило его построения и применение в создании интерьера, например

Построение такое. На прямой от точки A трижды откладываем отрезок произвольной длины. Эту длину обозначим O. Получаем точку B. Через нее проводим прямую, перпендикулярную отрезку AB. На этой линии в обе стороны от точки B откладываем величину O. Получаем две точки d и d1. Соединяем их с точкой A. Вот и получили треугольник, стороны которого относятся как 1,62. Проверить это можно, если отложить при помощи циркуля длину основания на боковой стороне (точка C). Вторая проверка — противолежащий угол составляет 36°.

Построение пентаграммы несколько сложнее. Ее вписываем в круг, без циркуля не обойтись.

  • Центр окружности обозначаем O, через него проводим прямую до пересечения с окружностью. Одну из точек пересечения обозначаем A. Отрезок OA — диаметр окружности.
  • Находим середину отрезка OD, ставим точку E. Из центра окружности вверх до пересечения с окружностью восстанавливаем перпендикуляр. Это точка D.

  • Соединяем точки E и D. При помощи циркуля откладываем на радиусе точку C. Отрезок СD равен длине отрезка ED. Циркулем замеряем длину отрезка ED. Иглу ставим в точку E, ведем грифель до пересечения с радиусом. Вот и получили точку C.
  • Длинна отрезка DC — сторона пентаграммы. Замеряем ее, при помощи циркуля переносим на окружность. Для этого циркулем с отложенным расстоянием ставим еще четыре точки на окружности, поочередно соединив их, получаем пентаграмму.

Вот что интересно, если вершины полученной пентаграммы использовать для прорисовки звезды, она будет состоять из идеальных треугольников.

Применение в строительстве

Как уже говорили, неизвестно кто открыл золотое сечение, но все, что кажется нам красивым, имеет именно такое соотношение сторон. Примеров в природе очень много. Если рассматривать известные здания, то и там тоже есть та же закономерность.

Исаакиевский собор — можете посчитать ради интереса

Если вы хотите, чтобы ваш дом внутри и снаружи был привлекательным, запоминался и нравился, при создании или выборе проекта можно просчитать хотя бы основные пропорции. Внести корректировки в пропорции, возможно, не всегда легко, часто связано с дополнительными расходами. Но, если при создании проекта сразу держать в уме золотое сечение, вопросы сами по себе отпадают. На самом деле не так уж это сложно.

Например, вы хотите дом площадью около 100 квадратных метров. Длинную сторону можно принять за 12 метров. Тогда короткая находится как 62% от длинной и составит 7,44 метра. Можно сделать 7 метров или 7,5, можно увеличить до 8. Точное, до сантиметра соблюдение размеров совсем не обязательно. Важно соотношение. А «на глаз» даже в приближении смотрится гармонично. Площадь застройки в таком случае получается несколько меньше — 90-96 квадратов. Если вам надо больше — берите длинную сторону равной 13 метрам и снова считайте. Вроде как применять золотое сечение при создании плана дома понятно.

Если основные параметры строения имеют правильную пропорцию, в любом стиле здание смотрится интересно

Высота этажа в таком случае принимается как 32% от длинной части. Она составит 12*0,32 = 3,84 метра. В принципе, это соответствует нынешним представлениям о комфортных габаритах помещения, но при желании можно сделать высоту меньше. Примерно также рассчитываются, подбираются все остальные фрагменты дома.

Не стоит забывать, что дом должен вписываться также в ландшафт. Если есть какая-то доминанта — высокий холм, например, то просчитывать надо и соотношение с холмом, и с пропорциями участка. В общем, для создания гармоничной усадьбы очень многие факторы надо учитывать.

Не только прямые линии можно использовать. Правда с изогнутыми поверхностями работать сложнее, да и обходятся они дороже — нестандартное устройство всегда более затратное

По такому же принципу разрабатывают внутреннюю планировку, стараясь по возможности соблюдать требуемое соотношение. Но еще раз повторим: по возможности. Не зацикливайтесь на точном соответствии до сантиметра. Важна общая тенденция.

Золотое соотношение во внутреннем оформлении

Что еще дает золотое сечение кроме визуального наслаждения? Психологи говорят, что в интерьере, созданном по этому правилу человек чувствует себя более комфортно. Это, конечно, субъективно, но можно попробовать. Итак, вот как интерпретируют правило золотого сечения в дизайне интерьеров:

  • Если вы собираетесь разделить комнату на зоны, воспользуйтесь правилом. Это значит, что одна из частей должна быть около 62%, вторая — 38%.
  • Площадь, занятая предметами мебели, не должна быть больше чем 2/3.
  • При подборе мебели руководствуемся правилом: каждый средний предмет по габаритам относится к крупным так же, как маленький к средним.
  • При выборе цвета придерживайтесь примерно тех же правил:
  • Основной цвет составляет порядка 2/3, все дополнительные и акцентный — 1/3. Цвета выбирают сочетающиеся по определенным правилам.
  • Второй вариант: 60% — основной цвет, 30% дополнительные и 10% — это акцентные.

Пример подбора цвета по правилам правильной пропорциональности

Относительно мебели правило кажется непонятным, но это только на первый взгляд. Например, подбираем группу отдыха. Крупный предмет в этом случае — диван или софа. Средний — журнальный или кофейный столик, кресла. Мелкие — аксессуары. Так вот, размеры журнального столика не должны быть больше длинной стороны дивана, кресла — не больше его короткой стороны. Аксессуары по размерам не больше размеров столика или кресел. В идеале, они соотносятся с ними как 62% и 38%.

Пропорциональность — важная вещь

Почему не указывается точное соотношение? Потому что, во-первых, найти такие предметы нереально. Во-вторых, золотое сечение — это не только 62% и 38%. Это еще и последовательность Фибоначчи, следование которой также делает оформление гармоничным. Есть люди, у которых следование этой последовательности является «встроенной функцией». Им не надо считать, они выбирают основываясь на чутье и интуиции. Но если проанализировать их выбор, пропорции будут близки к идеальным. Вот так.

Золотое сечение в ландшафтном дизайне

При создании ландшафта на участке, принцип идеальных пропорций применяют, называя его правилом треугольника. В композиции должна быть одна доминанта, остальные ее составляющие лишь подчеркивают, оттеняют ее. Например, на участке есть большое дерево и вы хотите его обыграть. Оно и будет центром композиции — доминантой. Нанесите его на план, расчертите клумбу или рокарий, альпинарий — то, что хотите сделать.

Правило треугольника в садовом дизайне

От главенствующего растения или камня, под прямым углом проведите две линии. На этих линиях надо будет высадить более низкие растения. Причем второе по высоте не должно быть выше чем 2/3 от высоты основного объекта. Третий объект — не выше чем 1/3. Дополняют композицию еще более низкорослыми насаждениями. Это коротко о том, как применять золотое сечение в планировке посадок.

Но это не все. Растения надо подбирать по цветам — сочетание зелени разных оттенков, вкрапления цветов и декоративно-лиственных растений — все подчиняется тому же закону. Доминирующий оттенок составляет порядка 60%, дополнительные цвета — 30%, акценты — 10 %. Это если говорить о правилах подбора в одной группе. Но также надо согласовывать и весь план целиком — по размерам, высоте, цветам.

Золотое сечение – это то, о чем должен знать каждый дизайнер. Мы объясним, что это такое, и как вы можете его использовать.

Существует общее математическое соотношение, найденное в природе, которое может быть использовано в дизайне для создания приятных, натурально-выглядящих композиций. Его называют Золотым Сечением или греческой буквой “фи”. Если вы иллюстратор, арт директор или графический дизайнер, вам определенно стоит использовать Золотое Сечение в каждом проекте.

В этой статье мы объясним, как его использовать, а также поделимся несколькими отличными инструментами для дальнейшего вдохновения и изучения.

Тесно связанная с Последовательностью Фибоначи (Fibonacci Sequence), которую вы, возможно, помните из уроков математики или романа Дэна Брауна “Код Да Винчи”, Золотое Сечение описывает идеально симметричное взаимоотношение между двумя пропорциями.

Приблизительно равное соотношению 1 : 1.61, Золотое Сечение может быть иллюститровано как Золотой Прямоугольник: большой прямоугольник, включающий квадрат (в котором стороны равны длине самой короткой стороны прямоугольника) и прямоугольник поменьше.

Если убрать квадрат из прямоугольника, останется другой, маленький Золотой Прямоугольник. Этот процесс может продолжаться до бесконечности, как и цифры Фибоначи, которые работают в обратном порядке. (Добавление квадрата со сторонами, равными длине самой длинной стороны прямоугольника, приближает вас к Золотому Прямоугольнику и Золотому Сечению.)

Золотое Сечение в действии

Считается, что Золотое Сечение используется уже около 4000 лет в искусстве и дизайне. Однако, многие люди соглашаются, что при строительстве Египетских Пирамид также использовался этот принцип.

В более современные времена это правило может быть замечено в музыке, искусстве и дизайне вокруг нас. Применяя аналогичную рабочую методологию, вы можете привнести в свою работу те же особенности дизайна. Давайте взглянем на несколько вдохновляющих примеров.

Греческая архитектура

В древнегреческой архитектуре Золотое Сечение использовалось для определения приятных пространственных отношений между шириной здания и его высотой, размером портика и даже положением колонн, поддерживающих структуру.

В результате получается идеально пропорциональное строение. Движение неоклассической архитектуры также использовало эти принципы.

Тайная вечеря

Леонардо Да Винчи, как и многие другие художники прошлых лет, часто использовал Золотое Сечение для создания приятных композиций.

В Тайной вечере фигуры расположены в нижних двух третях (самая большая из двух частей Золотого Сечения), а Иисус идеально зарисован между золотых прямоугольников.

Золотое сечение в природе

Существует множество примеров Золотого Сечения в природе – их вы можете обнаружить вокруг себя. Цветы, морские раковины, ананасы и даже пчелиные соты демонстрируют одинаковое соотношение.

Как рассчитать Золотое Сечение

Рассчет Золотого Сечения достаточно прост, и начинается с простого квадрата:

01. Нарисуйте квадрат

Он образует длину короткой стороны прямоугольника.

02. Разделите квадрат

Разделите квадрат пополам с помощью вертикальной линии, образуя два прямоугольника.

03. Проведите диагональ

В одном из прямоугольников проведиде линию из одного угла в противоположный.

04. Поверните

Поверните эту линию так, чтобы она легла горизонтально по отношению к первому прямоугольнику.

05. Создайте новый прямоугольник

Создайте прямоугольник, используя новую горизонтальную линию и первый прямоугольник.

Как использовать Золотое Сечение

Использовать этот принцип проще, чем вы думаете. Существует пара быстрых трюков, которые вы можете использовать в своих макетах, или потратить немного больше времени и полностью раскрыть концепт.

Быстрый способ

Если вы когда-нибудь сталкивались с “Правилом третей”, то вам будет знакома идея разделения пространства на равные трети по вертикали и горизонтали, при этом места пересечения линий создают естественные точки для объектов.

Фотограф размещает ключевой объект на одной из этих пересекающихся линий, чтобы создать приятную композицию. Этот прицип может также использоваться в вашей разметке страниц и дизайне постеров.

Правило третей можно применять к любой форме, но если вы примените его к прямоугольнику с пропорциями примерно 1 : 1.6, вы окажетесь очень близко к золотому прямоугольнику, что сделает композицию более приятной для глаз.

Полная реализация

Если вы хотите реализовать Золотое Сечение в вашем дизайне в полной мере, то просто расположите основной контент и сайдбар (в веб дизайне) в соотношении равном 1 : 1.61.

Можно округлить значения в меньшую или большую стороны: если контент-зона равна 640px, а сайдбар 400px, то эта разметка вполне подойдет под Золотое Сечение.

Разумеется, вы также можете разделить области контента и боковой панели на одно и то же отношение, а связь между заголовком веб-страницы, областью содержимого, футером и навигацией также может быть спроектирована с использованием того же приципа.

Полезные инструменты

Вот несколько инструментов, которые помогут вам в использовании Золотого Сечения в дизайне и создании пропорциональных проектов.

GoldenRATIO – это приложение для создания дизайна веб сайтов, интерфейсов и шаблонов, подходящих под Золотое Сечение. Доступно в Mac App Store за 2,99$. Включает визуальный калькулятор Золотого Сечения.

Так же в приложении есть функция “Избранное”, которое сохраняет настройки для повторяющихся задач и “Click-thru” мод, позволяющий сворачивать приложение в Photoshop.

Этот калькулятор Золотого Сечения от Pearsonified помогает в создании идеальной типографики для вашего сайта. Введите размер шрифта, ширину контейнера в поле, и нажмите кнопку Set my type! Если вам нужно оптимизировать количество букв в строчке, вы можете дополнительно ввести значение CPL.

Это простое, полезное и бесплатное приложение доступно для Mac и PC. Введите любое число, и приложение вычислит вторую цифру в соответствии с приципом Золотого Сечения.

Это приложение позволяет проектировать с золотыми пропорциями, экономя кучу времени на вычислениях.

Вы можете менять формы и размеры, фокусируясь на работе над своим проектом. Постоянная лицензия стоит 49$, но вы можете скачать бесплатную версию на месяц.

Обучение Золтому Сечению

Вот несколько полезных туториалов по Золотому Сечению (английский язык):

В этом туториале для Digital Arts Роберто Маррас (Roberto Marras) показывает, как использовать Золотое Сечение в художественной работе.

Туториал от Tuts+, рассказывающий, как использовать золотые принципы в веб дизайн проектах.

Туториал от Smashing Magazine, рассказывающий о пропорциях и правиле третей.

Автор оригинального текста Creative Bloq Staff

В погоне за вчерашним днём

July 2013

SMTWTFS
123456
78910111213
14151617181920
21222324252627
28293031

Основные построения золотого сечения

На практике при выборе формата листа (картины) часто используют «классические» пропорции сторон прямоугольника, в котором отношение меньшей стороны к большей составляет число 0,6180339, а большей к меньшей — 1,6180339. Эти числа с древнейших времён называют золотыми, а отношение величин, необходимое для их получения, известно как золотая пропорция или золотое сечение.

Основа учения о гармонии мира, выраженная в числовых отношениях, была заложена древнегреческим учёным-математиком Пифагором (VI в до н.э). Им представлено золотое сечение как одна из закономерностей, математически точно определяющая наиболее красивое и гармоничное соотношение частей целого, разделённого на две неравные половины.

На соотношении частей отрезка в пропорциях золотого сечения основано построение прямоугольника. С помощью диагоналей осуществляется членение его на составные части, при котором образуется динамика пропорциональных фигур — квадрата, прямоугольника, а также прямоугольного и равнобедренного треугольников.


Т.о., используя диагонали можно получить последовательный ряд увеличивающихся прямоугольников, с соотношением сторон — 1:√ 2, 1:√3, 1:√4, 1:√5, производных от квадрата.


При стороне √4 образуется прямоугольник с удвоенным квадратом. При стороне √3 образуется два прямоугольных треугольника, у которых общая гипотенуза является диагональю прямоугольника, равная удвоенной величине меньшего катета (т.е. стороне квадрата), и они имеют острые углы 30 и 60 градусов.

Диагональ используется и в построении последовательно увеличивающихся квадратов, создающих «динамическое» развитие их величины.


В этом построении сторона каждого последующего квадрата относится к стороне предыдущего, как диагональ квадрата к его же стороне. Эти преобразования иногда называют «активным квадратом».

Геометрическая система динамических пропорций квадрата, прямоугольника и треугольника были основой в создании архитектурных сооружений в ранний период Древнего Египта. Кроме того, в условиях примитивной техники архитектурного строительства в те далёкие времена постоянно требовалось восстановление перпендикуляра к прямой, которое осуществлялось тогда при помощи верёвки с 12 узлами. С использованием такого приспособления получался прямоугольный треугольник с отношением строно — 3:4:5, который впоследствии стали называть египетским. В настоящее время на его основе строят прямые углы и проводят перпендикуляры к концу отрезка.

С древнейших времён золотое сечение используется в практике построения различных изображений. Это способствует созданию гармоничных образов и уравновешенности пропорций во всём, что на окружает. Пропорции золотого сечения присутствуют в мамематике, и особенно в геометрии, в изобразительном искусстве, в быту и в природе, в растительном и животном мире.

Золотое сечение получило широкое развитие в математике. Так, в XVI веке итальянский учёный Фибоначчи выстроил математический ряд цифр, при котором последующее число определяет сумму двух предыдущих — 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. Кроме того, устанавливается и другая зависимость этих чисел, при которой отношение каждого последующего к предыдущему выражается числом 1,618. а предыдущего к последующему — 0,618. Таким образом, в этом математическом ряду образуется взаимосвязь чисел, содержащая пропорции золотого сечения.

Особенно часто золотое сечение используется в геометрии при делении окружности на равные части и построении правильных многоугольников.

В звёздчатом многоугольнике — пятиконечной звезде, каждая точка пересечения её сторон делит их на две неравные части в пропорциях золотого сечения.

С древнейших времён золотое сечение применялось в различных видах изобразительного искусства — в архитектуре, вкульптуре, живописи. Парфенон — классический пример применения золотого сечения в архитектуре.

Особенно широко использовал в своём творчестве соотношение величин золотого сечения Леонардо да Винчи, которое он назвал «божественная пропорция».

Числовой гармонии золотого сечения подчиняются также античные статуи греческого искусства, отражающие пропорции идеально сложённого человеческого тела.

Золотое сечение применяют в начертании букв и цифр различного шрифта.

Золотое сечение часто используют в определении величины прямоугольника при заданной его большей или меньшей стороне. Если у прямоугольной картины задана длина (АВ), то её высоту (АС) определяют следующим построением:


Сначала из конца отрезка (В) проводят дугу, равную его половине до пересечения с перпендикуляром (АО=ОВ=ВД). Полученную точку Д соединяют прямой с другим концом отрезка (А). Затем из точки Д проводят дугу радиусом ВД до пересечения с этой прямой и отмечают точку Е. Дуга, проведённая из конца отрезка А радиусом АЕ определяет по вертикальной прямой точку С и искомую высоту картины АС.

Если задана высота картины (АС), то её длину (АВ) определяют другим построением. Сначала строят квадрат АСДЕ со стороной равной АС. Затем из середины стороны квадрата (О) проводят дугу радиусом ОД и получают на горизонтальной прямой точку В, которая определит искомую длину стороны прямоугольной картины АВ.

По прямоугольнику с золотыми пропорциями можно построить любой величинны подобный формат листа.


Для этого его накладывают на лист бумаги в один из его углов (А) и проводят в нём диагональ. Затем от точки А откладывают заданный размер горизонтальной или вертикальной стороны формата листа и через его конец проводят перпендикуляр до пересечения с диагональю, которая определит вторую сторону прямоугольника.

Источник: М.Н. Макарова «Практическая перспектива»

Posted on Feb. 16th, 2013 at 04:42 am | Link | Leave a comment | Share | Flag

Калькулятор золотого сечения

→ Идеальное соотношение

Золотое сечение считается идеальным, и именно по этой причине они годами используются в архитектуре и других аспектах, таких как веб-дизайн. При создании веб-сайта многие учитывают золотые пропорции, чтобы его дизайн был идеальным.

Калькулятор золотого сечения в веб-дизайне позволяет узнать точную ширину столбца содержимого и боковой панели Интернета, наиболее распространенной конфигурации, используемой сегодня в Интернете.Вам просто нужно ввести общую ширину сети в пикселях, и после нажатия кнопки «Рассчитать» вы получите ширину, которую должен иметь каждый из этих элементов:

Золотое сечение

Если вы зашли так далеко, вы можете спросить себя , что такое золотое сечение . Если вы еще не знаете, золотое число или золотое сечение — это иррациональное число (оно имеет бесконечное количество десятичных знаков) и связывает пропорции между двумя сегментами прямой линии.

Эта пропорция присутствует в некоторых геометрических фигурах, в элементах природы и неоднократно использовалась в мире архитектуры и искусства благодаря своей «идеальной пропорциональности» и гармонии, которую она передает в тех местах, где она присутствует. .

Золотое сечение представлено греческой буквой Phi (обозначается Φ) и имеет следующее значение:

Φ = 1,6180339887498948 …

На сегодняшний день, , золотое сечение продолжает использоваться как пропорция , которая также была принята в мире Интернета и которая должна использоваться для достижения дизайна, приятного для глаз и пропорционального.

Как рассчитать золотое сечение

Как мы уже говорили ранее, золотое число связывает два отрезка прямой: a — отрезок большей длины, а b — отрезок меньшей длины, так что выполняется следующее уравнение:

Частное от a / b — это золотое сечение.

Если мы хотим, чтобы продемонстрировал значение золотого сечения , мы должны начать с приведенного выше уравнения и предпосылки, так что если Φ = a / b, то приведенное выше уравнение может быть выражено как:

1 + Φ -1 = Φ

Решаем пока не получим:

Φ 2 — Φ — 1 = 0

При решении этого уравнения второй степени остается следующее положительное решение:

Пример золотых сечений на сайте

Если мы хотим создать веб-сайт , общая ширина которого составляет 600 пикселей, калькулятор золотого сечения сообщит нам, что нам нужно, чтобы раздел содержимого был 370 пикселей в ширину и 230 пикселей в случае боковой панели, где баннеры, ссылки и другие элементы навигации.

Калькулятор золотого сечения «Rado Vleugel Media

Золотое сечение в современном веб-дизайне

Я использовал золотое сечение, чтобы вычислить пропорцию окна калькулятора выше. Стандартная ширина моей области содержимого составляет 626 пикселей. Для расчета высоты я использовал следующее уравнение: 626 пикселей / золотое сечение = 387 пикселей. Также последовательность abcdefg следует золотому сечению.

Для многих других элементов на этом веб-сайте я использовал золотое сечение.Соотношение размеров шрифта между тремя словами, образующими мой логотип («Rado», «Vleugel» и «Media»), соответствует золотому сечению. Высота строки этого HTML-текста была рассчитана с использованием font-size * Golden Ratio.

Конечно, есть ограничения в использовании Золотого правила для веб-дизайна. В печати и в искусстве вы всегда видите объект целиком. В сети вы смотрите через окно (ваш экран), которое закрывает части объекта (веб-страницу). Золотое правило полезно применять к ширине столбцов веб-сайта, пропорции размеров шрифта, пропорции меньших изображений и блоков, но менее полезно применять его к высоте элементов, которые настолько велики, что им необходимо для прокрутки.

Объяснение золотого сечения

Два количества находятся в золотом сечении, если отношение суммы количеств к большему равно отношению большего к меньшему ( a + b равно a равно a равно b ). Золотое сечение — это иррациональная математическая константа, приблизительно 1,6180339887. Золотое сечение часто обозначается греческой буквой фи.

Другие названия, используемые для золотого сечения: Золотое сечение (латиница: sectio aurea ), Золотое сечение, Божественная пропорция, Божественное сечение (латиница: sectio divina ), Золотая пропорция, Золотая срезка и Золотое число.

Некоторые известные художники использовали золотое сечение. Если вы нарисуете прямоугольник вокруг лица Моны Лизы Леонардо да Винчи, отношение высоты к ширине этого прямоугольника будет равно золотому сечению. Возможно, Леонардо был введен идеей золотого сечения его другом Лукой Пачоли, который опубликовал трехтомный трактат о золотом сечении в 1509 году под названием Divina Proportione . Также мой любимый художник Сальвадор Дали использовал золотое сечение во многих своих картинах.

Золотое сечение и числа Фибоначчи

Золотое правило тесно связано с числами Фибоначчи.Числа Фибоначчи названы в честь талантливого математика 13 века Леонардо Пизанского (также известного как Леонардо Пизано, Леонардо Боначчи или Леонардо Фибоначчи). Большинство людей знают числа Фибоначчи из «Кода да Винчи», где числа используются для разблокировки сейфа.

Числа Фибоначчи приближаются к золотому сечению, поскольку числа становятся больше (попробуйте сами, используя калькулятор золотого сечения). Каждое новое число Фибоначчи получается путем сложения двух предыдущих чисел. Это пример последовательности Фибоначчи: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987…

Последовательность Фибоначчи можно рассматривать как спираль, вычерчивая последовательные квадраты, пропорциональные Фибоначчи.Начните с квадрата 1 x 1 . Рядом с этим квадратом разместите еще один квадрат 1 x 1 . Поскольку 1 + 1 равно 2 , следующий квадрат будет 2 x 2 . И 1 + 2 равно 3 . Итак, следующий квадрат 3 x 3 и так далее. Каждый последующий квадрат помещается в положение против часовой стрелки относительно последнего квадрата, поскольку они вращаются вокруг исходного квадрата 1 × 1 .

Даже сегодняшний фондовый рынок не застрахован от влияния Последовательности Фибоначчи.Некоторые трейдеры пытаются предсказать развороты рынка с помощью чисел Фибоначчи. Может, попробую, если заработаю побольше…

Калькулятор золотого сечения

| Taskvio

Как пользоваться калькулятором золотого сечения?

Калькулятор золотого сечения

— действительно хороший калькулятор, который поможет вам решить вашу проблему. Этот бесплатный инструмент для расчетов через Интернет очень удобен и может помочь вам решить множество проблем, связанных с золотым пайком.

Как вы знаете, этот инструмент бесплатный, поэтому вам даже не нужно регистрироваться или отправлять нам письмо по электронной почте. Вы просто зайдете на наш сайт, откроете этот инструмент и начнете использовать этот инструмент, и это действительно приятно. Потому что этот инструмент работает на любом устройстве, и вы также можете с комфортом использовать его на своем смартфоне, поэтому вам даже не придется беспокоиться о переноске компьютера или ноутбука.

Этот инструмент действительно быстрый и полезный для решения проблем, он решит вашу проблему очень быстро, и эта вещь действительно хороша, потому что вам даже не нужно беспокоиться о решении проблем вручную и тратить много времени.

Но решать проблемы вручную — это хорошая привычка, поэтому я рекомендую вам также решать проблемы вручную, чтобы вы не забыли, как решить любую проблему, потому что вы получите ответы только здесь. Наш инструмент не покажет вам пошаговое решение вашей проблемы, поэтому будет лучше, если вы попрактикуетесь в решении проблем вручную.

Что такое золотой рацион?

Блестящая пропорция, иначе называемая блестящим сегментом или блестящей протяженностью, достигается, когда две части имеют протяженность, равную протяженности их полноты большей из двух длин.Оценка блестящей пропорции, которая является ограничением пропорции последовательных чисел Фибоначчи, имеет оценку примерно 1,618.

Рецепт блестящей пропорции следующий. Пусть большая из двух секций будет обозначена как a, а более скромная — как b. В этой точке находится великолепная пропорция (a + b) / a = a / b. Любой старый пропорциональный мини-компьютер выполнит этот трюк за вас, однако, эта великолепная счетная машина решает эту проблему явно, поэтому вам не нужно беспокоиться!

Вот пошаговая стратегия определения пропорции вручную.

  • Найдите более расширенную секцию и отметьте ее
  • Найдите более ограниченную часть и назовите ее b
  • Укажите качества в уравнении.
  • Взять целиком a и b и зазор на
  • Взять изолированный от b
  • Если степень будет отличной, она вырастет примерно до 1,618
  • Используйте блестящую машину для сложения пропорций, чтобы проверить свой результат

Блестящий квадрат

Блестящий квадрат — это квадрат с длиной полосы a + и шириной a.Эта квадратная форма часто встречается в производстве, поскольку, как было сказано, она больше всего радует глаз из всех подобных квадратных форм. Счетная машина блестящей квадратной формы — полезный способ найти блестящую квадратную форму, а не работать с ней вручную.

Великолепная пропорция проявляется во многих видах инженерии и на некоторых примерах природы, например, в ходе действия листьев у некоторых растений. Великолепная протяженность также наблюдается в стандартных пятиугольниках.

Как пользоваться калькулятором золотого сечения?

Использовать этот калькулятор золотого сечения очень просто, вам не нужно прилагать так много усилий, чтобы использовать этот инструмент, потому что это действительно хороший и действительно бесплатный веб-инструмент. Использовать этот инструмент очень просто. Вам просто нужно выполнить несколько очень простых шагов.

Итак, как вы можете видеть в этом инструменте, у вас есть два текстовых поля, в которые вы можете ввести свое значение.

Поэтому введите свое значение в текстовое поле, как мы показали в примере, и даже в текстовое поле, а также дважды проверьте его, чтобы получить правильный ответ.

После того, как вы введете свое значение в поле, вам просто нужно нажать кнопку «Рассчитать», чтобы получить ответ, и это будет действительно приятно.

Советы: Вы также можете добавить этот инструмент в закладки, чтобы использовать его в будущем или использовать позже, когда он вам понадобится, и вы застряли, чтобы решить любую проблему вручную. Когда он будет добавлен в закладки, вы просто откроете свой браузер, затем нажмите на инструмент, отмеченный закладкой, и затем начнете использовать, но да, у вас должен быть Интернет.

Золотое сечение

Со времен древних греков, когда геометрия получила широкое развитие, приобрела особую ценность, было получено наиболее приятное и эстетическое значение между шириной и высотой прямоугольника.Это значение называется золотым сечением и обозначается символом φ (фи). Оно широко используется даже сегодня в архитектурный дизайн, искусство и изображения, напечатанные в книгах или веб-дизайн, и многие другие области, особенно в презентациях. Одно из наиболее распространенных применений золотого сечения в архитектуре — это фасад с греческими колоннами.
Значение φ примерно равно 1.618, но мы должны помнить, что в нем бесконечное количество цифр после точки поскольку значение является иррациональным числом. Это число может быть получено с помощью геометрии
, чтобы оно было равно положительному значению квадрата:
Значение φ выводится из определения золотого сечения:
и
Геометрическое описание золотого сечения представляет собой круг с радиусом:
Одна интересная особенность последовательности Фибоначчи заключается в том, что деление двух последовательных членов сходится к Золотое сечение.Точность тем выше, чем выше сроки.
Деление последовательности Фибоначчи:
Последовательность Фибоначчи — 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…

Что такое золотое сечение и как его применить к изображениям

970162098, КМН Фото

Если вы фотограф, дизайнер, иллюстратор или просто энтузиаст дизайна, понимание золотого сечения и того, как оно работает, поможет структурировать и сбалансировать ваш следующий проект.

В этом руководстве мы объясним, что такое золотое сечение и как его можно использовать. Чтобы понять золотое сечение, нужно немного математики, немного истории и немного практики. После освоения вы найдете его полезным в повседневном дизайне.

Что такое золотое сечение?

1031570948, вчал

Золотое сечение — это математический расчет, который дизайнеры могут использовать для создания ярких визуальных эффектов, привлекающих внимание зрителя.

Золотое сечение и соответствующие ему формы естественным образом встречаются в природе. Он стал идеальным инструментом для создания сбалансированных, гармоничных дизайнов, которые врожденно нравятся людям. Дизайнеры могут использовать золотое сечение для создания эстетически приятных композиций. Укоренившись в природе и найденный на протяжении всей истории, он продолжает оставаться исключительным инструментом для любого современного дизайнера.

Чтобы разбить математику, золотое сечение достигается, когда линия делится на две части, и более длинная часть (a), деленная на меньшую часть (b), равна сумме (a) + (b), деленной на (a) и оба равны 1.618.

Дизайнеру необязательно запоминать все математические вычисления и уравнения. Цель золотого сечения — создать сильный визуальный эффект за счет баланса и пропорций. Золотое сечение — это просто фигура с соотношением от 1 к 1,618.

Золотое сечение — это то же самое, что и последовательность Фибоначчи?

Золотое сечение и последовательность Фибоначчи связаны друг с другом, но это не одно и то же. Последовательность Фибоначчи — это встречающаяся в природе последовательность чисел, которые можно встретить в природе, от количества листьев на дереве до спиральной формы морской ракушки.Золотое сечение используется для выражения разницы между любыми двумя последовательными числами в последовательности Фибоначчи. Если вы возьмете любые два последовательных числа Фибоначчи и вычислите их отношение, оно всегда будет близко к золотому сечению 1,618.

Последовательность Фибоначчи легко выучить. Начиная с чисел 0 и 1, каждое последующее число определяется сложением двух предыдущих чисел в последовательности:

0, 1, 1, 2, 3, 5, 8, 13, 21 и так далее.

Открытие последовательности Фибоначчи (а затем и золотого сечения) восходит к столетиям, когда историки начали наблюдать естественные повторяющиеся закономерности в природе.Было обнаружено, что все эти органические элементы, от листьев до цветов и ракушек, имеют общий узор. Как последовательность Фибоначчи соотносится с золотым сечением, опять же через математику. Соотношение следующих друг за другом пар чисел в последовательности составляет примерно 1,618. Пять, разделенная на 3, составляет 1,666, 8, разделенная на 5, составляет 1,60, и модель продолжается.

Золотые формы для использования

951686588, световой аспект

Золотое сечение позволяет создавать разнообразные пропорционально приятные формы в дизайне.Наиболее часто используемые золотые формы — это золотые прямоугольники, золотые круги, золотые спирали и золотые треугольники. Эти золотые формы можно использовать сами по себе или в сочетании для создания сбалансированных и эстетичных дизайнерских композиций.

Создание золотого прямоугольника

Золотой прямоугольник соответствует параметрам золотого сечения. Чем чаще вы делите золотой прямоугольник с помощью золотого сечения, тем больше он естественным образом привлекает внимание к наиболее важным элементам вашего дизайна.Чтобы создать золотой прямоугольник, возьмите простой квадрат и умножьте одну сторону на 1,618, чтобы получить новую форму. Эта новая форма будет началом вашего золотого прямоугольника.

Теперь возьмите исходный квадрат и наложите его на новый прямоугольник. Вы создали золотое сечение внутри прямоугольника. Продолжая применять формулу золотого сечения к новому прямоугольнику справа, в конечном итоге будет создано изображение с квадратами все меньшего размера.

Использование золотых прямоугольников в форматировании содержимого и дизайна может помочь обеспечить пропорциональность и расчет макета.

Создание золотой спирали

Используйте новые прямоугольники, чтобы нарисовать золотую спираль, начиная с одного угла каждого квадрата и заканчивая в противоположном.

Дизайнеры и маркетологи могут использовать золотую спираль, чтобы определить, где разместить контент в рекламе и маркетинговых дисплеях. Человеческий глаз естественным образом следует кривой и ищет детали в центре спирали, что делает его идеальным местом для размещения наиболее важных деталей.

Как использовать золотое сечение?

1214082803, Александар Накич

Золотое сечение и связанные с ним формы можно использовать во многих элементах дизайна, включая интервалы, контент и макеты.

Создание размеров компоновки с использованием золотого сечения

Используйте золотое сечение как ориентир для определения размеров вашего следующего макета. Один из простых способов попрактиковаться в этом приложении — установить размер 1: 1,618.

Например, возьмите типичный макет шириной 960 пикселей и разделите его на 1,618. У вас получится 594, чтобы создать высоту. Теперь разбейте этот макет на две колонки, используя золотое сечение. Работая с этими двумя формами, ваш макет будет соответствовать естественным эстетическим пропорциям, созданным золотым сечением.

Создание макетов с использованием схемы золотого сечения

Интервал — важный и часто требующий много времени элемент любого дизайна. Используйте золотое сечение, чтобы сначала создать золотой прямоугольник, а затем используйте формулу для создания последующих квадратов, которые указывают, где должны быть размещены важные элементы дизайна. Использование золотого сечения в вашем макете гарантирует, что интервалы и пропорции будут рассчитаны и точны, а не угаданы или угаданы.

Размещение контента с помощью золотой спирали

Золотая спираль создает идеальное визуальное руководство для определения места размещения контента.Сосредоточьте самые важные элементы вашего дизайна в центре спирали, чтобы читатель увидел то, что вы хотите, чтобы он увидел.

Использование золотого сечения в типографике

Золотое сечение можно использовать в качестве руководства для определения наилучшего размера для различных текстовых иерархий в вашем дизайн-проекте. Сначала выберите размер основного текста. Умножьте это число на 1,618 и округлите до ближайшего целого числа, чтобы получить размер заголовка, пропорциональный существующему основному тексту.Цифры также можно использовать в обратном порядке. Если у вас есть предопределенный размер текста и вам нужно выяснить, какой размер лучше всего подходит для основного текста, просто разделите его на 1,618 и округлите до ближайшего целого числа.

Дизайн иконок и логотипов с использованием золотого сечения

Треугольники, квадраты, круги и спирали — это все золотые формы, которые можно использовать при разработке значка или логотипа. Использование золотых форм в дизайне вашего логотипа может помочь создать баланс и пропорции, которые помогут привлечь внимание зрителя и сделают ваш логотип привлекательным и запоминающимся.

Примеры золотого сечения

628162194, Сушиман

Если вы присмотритесь, вы начнете замечать, что золотое сечение постоянно проявляется как в природе, так и в дизайне, созданном руками человека. Ниже приведены несколько популярных примеров, которые покажут, как золотое сечение использовалось в искусстве, дизайне, фотографии и природе.

Золотое сечение в искусстве

1308281347, Анна Блиох

Золотое сечение (намеренно или непреднамеренно) с рисунком, который естественно радует глаз, использовалось на протяжении всей истории в некоторых из самых ценных и легко узнаваемых произведений искусства.

Золотое сечение в дизайне

Золотое сечение и связанные с ним формы можно найти в большинстве брендов широко известных и популярных компаний, таких как Pepsi и National Geographic.

Золотое сечение в фотографии

Профессиональные фотографии часто создаются по общему правилу спирали золотого сечения. Глаз зрителя будет естественно следовать по спирали к ее центру, поэтому объекты следует размещать здесь для максимального визуального воздействия.

Золотое сечение в природе

139526182, мстроз

Золотое сечение часто встречается в мире природы. Его можно увидеть во всем: от цветов до ракушек и даже ураганов.

Инструменты для расчета золотого сечения

Хотя полезно понимать математику, лежащую в основе золотого сечения, существует множество онлайн-калькуляторов и шаблонов, которые могут помочь ускорить процесс, если числа начинают казаться чрезмерными.

Понимание золотого сечения и того, как его можно использовать, требует практики, но теперь, когда вы изучили основы, оно может служить отличным руководством для повышения уровня вашего следующего дизайна. Для стоковых фотографий, векторных изображений и других дизайнов, демонстрирующих золотое сечение в действии, ознакомьтесь с нашей библиотекой изображений на iStock.

Калькулятор золотого сечения

| SlideME

Калькулятор золотого сечения позволяет ввести значение общей ширины и разделить его по золотому сечению.Идеально подходит для дизайнеров, которым нужна информация о расстоянии, или для тех, кто интересуется точными пропорциями.

В математике и искусстве две величины находятся в золотом сечении, если отношение суммы величин к большему количеству равно отношению большего количества к меньшему. Золотое сечение — это иррациональная математическая константа, приблизительно 1,61803398874989. Другие названия, часто используемые для золотого сечения, — это золотое сечение и золотая середина. Другие встречающиеся термины включают крайнее и среднее соотношение, среднее сечение, божественную пропорцию, божественное сечение (латинское: sectio divina), золотую пропорцию, золотую огранку, золотое число и среднее значение Фидия

.

Приложение

Родительский рейтинг:

Все (от 6 лет)

Язык по умолчанию:

английский

С рекламой:

да

Скриншоты:

Требования

Требуется Google Play и / или аккаунт:

Нет

Требуются сторонние библиотеки:

Нет

Требуется устройство с root-доступом:

Нет

Минимальная версия Android:

Android 2.2

Минимальная ширина экрана:

240 пикселей

Требуется функций:

Сенсорный экран

Требуются разрешения:

Состояние сети доступа, Интернет

KGR (Золотое сечение ключевого слова) Инструмент исследования ключевых слов || Поиск ключевых слов || Массовый калькулятор

Что такое золотое сечение ключевого слова?

KGR означает золотое сечение ключевого слова, золотое сечение ключевого слова — это метод исследования ключевых слов для поиска ключевых слов с очень низкой конкуренцией.Если вы получите ключевое слово KGR и напишете о нем хорошую статью, то вы будете ранжироваться по ключевому слову через 24-48 часов после индексации.

KGR полезен для новых веб-сайтов: ключевые слова KGR имеют очень низкую конкуренцию, поэтому, если какой-либо новый веб-сайт или блог напишет хорошую статью по ключевому слову KGR, эта статья будет ранжироваться в Google, и веб-сайт начнет получать трафик. Да, посещаемость небольшая, но для новых сайтов это здорово. KGR = allintitle / ежемесячный объем поиска KGR — это отношение «allintitle» (поискового оператора Google) к ежемесячным поискам.

Как получить количество ключевых слов в результатах «allintitle»?

Следуйте приведенным ниже инструкциям.
  • Добавьте суффикс allintitle: к ключевому слову
Например: Если ваше ключевое слово — «как сделать SEO», вам нужно выполнить поиск «allintitle: как сделать SEO».
  • Введите ключевое слово в Google
  • Нажмите кнопку поиска
  • Как вы видите ниже, перед первым списком есть текст, содержащий несколько результатов. Вы также можете увидеть то же самое для ключевого слова
  • Это количество результатов allintitle для вашего ключевого слова.
Запишите число и пропустите его на нашем инструменте, чтобы получить значение KGR.

Как ключевое слово золотое сечение?

Ответ на вопрос, как это просто … этот веб-сайт является калькулятором золотого сечения ключевых слов. Мы сделали все, что вам нужно, чтобы пропустить ключевое слово. Но если вам интересно узнать, как рассчитывается KGR, прочтите следующий абзац. Золотое сечение ключевого слова таково: количество результатов Google, в названии которых есть ключевое слово, деленное на ежемесячный объем поиска.Если KGR меньше 0,25, то вы должны попасть в топ-50, как только ваша страница будет проиндексирована.

Почему ключевое слово золотое сечение?

KGR Ключевые слова — это просто ключевые слова с низкой конкуренцией. Так что их легко ранжировать. Если вы сможете найти эти ключевые слова и написать контент с таргетингом на это ключевое слово, то ваша статья попадет в топ-40 результатов поиска через несколько дней, а иногда даже через несколько часов. Если у вашего сайта есть некоторый авторитет, то вы сможете попасть в топ-15 в течение нескольких часов. Я рекомендую вам ознакомиться с некоторыми тематическими исследованиями золотого сечения ключевых слов после того, как вы получите свой ответ.
Оставить комментарий

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *